PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Injection Moulding Process via Design of Experiment (DOE) Method based on Rice Husk (RH) Reinforced Low Density Polyethylene (LDPE) Composite Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimal parameters setting of injection moulding (IM) machine critically effects productivity, quality, and cost production of end products in manufacturing industries. Previously, trial and error method were the most common method for the production engineers to meet the optimal process injection moulding parameter setting. Inappropriate injection moulding machine parameter settings can lead to poor production and quality of a product. Therefore, this study was purposefully carried out to overcome those uncertainty. This paper presents a statistical technique on the optimization of injection moulding process parameters through central composite design (CCD). In this study, an understanding of the injection moulding process and consequently its optimization is carried out by CCD based on three parameters (melt temperature, packing pressure, and cooling time) which influence the shrinkage and tensile strength of rice husk (RH) reinforced low density polyethylene (LDPE) composites. Statistical results and analysis are used to provide better interpretation of the experiment. The models are form from analysis of variance (ANOVA) method and the model passed the tests for normality and independence assumptions.
Twórcy
autor
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Kampus Alam Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Częstochowa University of Technology, Department of Physics, 42-200 Częstochowa, Poland
autor
  • Częstochowa University of Technology, Department of Physics, 42-200 Częstochowa, Poland
  • Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  • Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
Bibliografia
  • [1] S. Elsheikhi, K. Benyounis, Review of Recent Developments in Injection Molding Process for Polymeric Materials, Ref. Modul. Materials Science and Mater. Eng. 24, 165-182 (2016).
  • [2] I. Meekers, P. Refalo, A. Rochman, Analysis of process parameters affecting energy consumption in plastic injection moulding, In Proceedings of 25th CIRP Life Cycle Engineering (LCE) Conf., Copenhagen, Denmark, 30 April-2 May, 342-347 (2018).
  • [3] J. Jozwik, A. Tofil, A. Lukaszewicz, Application of Modern Measurement Techniques for Analysis of Injection Moulding Shrinkage, In Proceedings of 18th International Scientific Conf. on Engineering for Rural Development, Jelgava, Latvia, 22-24 April, 1742-1748 (2019).
  • [4] M. Zeppenfeld, B. Müller, S. Heyl, Influence of insert component position and geometry on shrinkage in thermoplastic insert molding,. In AIP Conf. Proceedings, August, 30005 (2019).
  • [5] C. A. Juarez, G. Fajardo, S. Monroy, A. Duran-Herrera, P. Valdez, C. Magniont, Comparative Study Between Natural and PVA Fibers to Reduce Plastic Shrinkage Cracking in Cement-Based Composite, Constr. Build. Mater. 91, 164-170 (2015).
  • [6] P. Raos, J. Stojsic, Influence of Injection Moulding Parameters on Tensile Strength of Injection Moulded Part, Manuf. Ind. Eng. 13, 3-4, (2014).
  • [7] M.H.M. Haris, S.B.T. Shafei, N.O.R.R.B.T. Abd Rahman, Optimization of Plastic Njection Moulding Process Parameters Using Taguchi Method for Sink Mark Defect, Int. J. Res. Innov. Manag. 6 (1), 13-20 (2020).
  • [8] A. López, J. Aisa, A. Martinez, D. Mercado, Injection Moulding Parameters Influence on Weight Quality of Complex Parts by Means of DOE Application: Case Study, Measurement 90, 349-356 (2016).
  • [9] M.A. Barghash, F.A. Alkaabneh, Shrinkage and Warpage Detailed Analysis and Optimization for The Injection Molding Process Using Multistage Experimental Design, Qual. Eng. 26, 319-334 (2014).
  • [10] A. Bilal, R.J.T. Lin, K. Jayaraman, Optimal Formulation of Rice Husk Reinforced Polyethylene Composites for Mechanical Performance: A Mixture Design Approach, J. Appl. Polym. Sci. 131 (16), 40647 (2014).
  • [11] S.A.N. Mohamed, E.S. Zainudin, S.M. Sapuan, M.A. Md. Deros, A.M. Tajul Arifin, Integration of Taguchi-Grey Relational Analysis Technique in Parameter Process Optimization for Rice Husk Composite, Bioresour. 14 (1), 1110-1126 (2018).
  • [12] D. Annicchiarico, J.R. Alcock, Review of Factors That Affect Shrinkage of Molded Part in Injection Molding, Mater. Manuf. Process. 29 (6), 662-682 (2014).
  • [13] Y.-T. Jou, W.-T. Lin, W.-C. Lee, T.-M Yeh, Integrating The Taguchi Method and Response Surface Methodology for Process Parameter Optimization of the Injection Molding, Appl. Math. Inf. Sci. 8 (3), 1277 (2014).
  • [14] T.M. Laid, K. Abdelhamid, L.S. Eddine, B. Abderrhmane, Optimizing the Biosynthesis Parameters of Iron Oxide Nanoparticles Using Central Composite Design, J. Mol. Struct. 1229, 129497 (2021).
  • [15] J. Yang, Optimization of Polyvinylamine-Modified Nanocellulose for Chlorpyrifos adsorption by Central Composite Design, Carbohydr. Polym. 245, 116542 (2020).
  • [16] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons: Hoboken, NJ, US, 179-215, (2017).
  • [17] A. Abubakar, A. Nuraddeen, Photocatalyst: A Promising Smart Material In Degradation of Dye Using Response Surface Methodology (RSM), Fudma J. Sci. 4, 591-600 (2020).
  • [18] F. Yin, H. Mao, L. Hua, W. Guo, M. Shu, Back Propagation Neural Network Modeling for Warpage Prediction and Optimization of Plastic Products During Injection Molding, Mater. Des. 32 (4), 1844-1850 (2011).
  • [19] K.M. Desai, S.A. Survase, P.S. Saudagar, S.S. Lele, R.S. Singhal, Comparison of Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in Fermentation Media Optimization: Case Study of Fermentative Production of Scleroglucan, Biochem. Eng. J. 41, 266-273 (2008).
Uwagi
1. The author would like to acknowledge Malaysian Ministry of Higher Education (MOHE), Fundamental Research Grant (FRGS) (Grant no.: FRGS/2/2013/TK04/UNIMAP/02/2) and Universiti Malaysia Perlis (Grant no.: 9003-00390, 9007-00067, 9017-00014, 9007-00130) for sponsoring and providing financial assistance for this research work.
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4095f3f-66b5-47a2-8233-ab394d253601
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.