PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-level Vienna Rectifier with a Brushless and Permanent Magnetless Generator for Wind Energy Conversion Systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a system design and control technique for a newly developed brushless and permanent magnetless synchronous generator-based variable-speed wind energy generation system, transferring power to a constant voltage dc grid via a three-level Vienna rectifier (VR). The recently established generator named Brushless Induction excited Synchronous Generator (BINSYG) is a wound field synchronous generator (WFSG), whose excitation is developed by controlling an Induction Machine fitted to the same machine structure and sharing the same magnetic core. A new controller is proposed that ensures the stable operation of BINSYG for a wide variation of shaft speeds. VR achieves sinusoidal input current and can control the power factor at its input, which is particularly suitable for wind energy applications. The top and bottom capacitor voltages of the VR are balanced using redundant switching combinations. The system with its proposed control algorithm is modelled in MATLAB/Simulink for a 5 kW rated BINSYG feeding power to a 750 V dc grid. The steady-state and dynamic state simulation results are presented and the controller performance is verified for a wide range of wind speeds. Further, real-time results using the OPAL-RT testbed are presented for the same system to verify the effectiveness of the overall control strategy.
Wydawca
Rocznik
Strony
84--102
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
  • Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Illinois, United States
  • Department of Electrical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
Bibliografia
  • Bhattacherjee, H., Mukherjee, D., Vuyyuru, U. and Chakraborty, C. (2021). Brushless Synchronous Generator-Unidirectional Rectifier for Offshore Wind Energy Conversion System. IEEE Transactions on Energy Conversion. Available at: https://ieeexplore.ieee.org/document/9629266
  • Bhattacherjee, H., Rao, Y. T. and Chakraborty, C. (2020). Brushless and Magnetless Synchronous Generator for Standalone DC Load with Vienna Rectifier. IEEE 29th International Symposium on Industrial Electronics (ISIE), Delft, Netherlands, pp. 83–88.
  • Bose, B. K. (2002). Modern Power Electronics and AC Drives. New Jersey, United States: Prentice Hall PTR.
  • Chakraborty, C. and Rao, Y. T. (2019). Performance of Brushless Induction Excited Synchronous Generator. IEEE Journal of Emerging and Selected Topics in Power Electronics, 7(4), pp. 2571–2582.
  • Flores-Bahamonde, F., Valderrama-Blavi, H., Martínez-Salamero, L., Maixé-Altés, J. and García, G. (2014). Control of a Three-Phase AC/DC VIENNA Converter Based on the Sliding Mode Loss-free Resistor Approach. IET Power Electronics, 7(5), pp. 1073–1082.
  • Gajewski, P., and Pieńkowski, K. (2016). The Performance of Direct-Driven Variable Speed Wind Turbine With Pmsg And Converter Systems. Power Electronics and Drives, 1, pp. 79–89.
  • Gil, M. D. P., Domínguez-García, J. L., Díaz-González, F., Aragüés-Peñalba, M., Gomis-Bellmunt, O. (2015). Feasibility Analysis of Offshore Wind Power Plants With DC Collection Grid. Renewable Energy, 78, pp. 467–477.
  • Global Wind Report 2021. (2021). GWEC. Available at: https://gwec.net/global-wind-report-2021/Accessed: December 2021.
  • Heier, S. (2014). Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, 3rd ed. New York: Wiley.
  • Iwański, G., and Łuszczyk, T. (2017). Control of Doubly Fed Induction Generator at Grid Voltage Imbalance. Power Electronics and Drives, 2, pp. 31–48.
  • Kumari, S., Kushwaha, V. and Gupta, T. N. (2018). A Maximum Power Point Tracking for a PMSG Based Variable Speed Wind Energy Conversion System. 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), Greater Noida, India, 2018, pp. 789–794.
  • Lee, J. and Lee, K. (2015). Open-Switch Fault Tolerance Control for a Three-Level NPC/T-Type Rectifier in Wind Turbine Systems. IEEE Transactions on Industrial Electronics, 62(2), pp. 1012–1021.
  • Lee, J. and Lee, K. (2017). Predictive Control of Vienna Rectifiers for PMSG Systems. IEEE Transactions on Industrial Electronics, 64(4), pp. 2580–2591.
  • Liu, Y., Pehrman, D., Lykartsis, O., Tang, J. and Liu, T. (2016). High Frequency Exciter of Electrically Excited Synchronous Motors for Vehicle Applications. 2016 XXII International Conference on Electrical Machines (ICEM), pp. 378–383.
  • Luqman, M., Yao, G., Zhou, L. and Lamichhane, A. (2019). Analysis of Variable Speed Wind Energy Conversion System with PMSG and Vienna Rectifier. IEEE 14th Conference on Industrial Electronics and Applications (ICIEA), pp. 1296–1301.
  • Maswood, A. I., Al-Ammar, E. and Liu, F. (2011). Average and Hysteresis Current-Controlled Three-Phase Three-Level Unity Power Factor Rectifier Operation and Performance. IET Power Electronics, 4(7), pp. 752–758.
  • Minibock, J. and Kolar, J. W. (2005). Novel Concept for Mains Voltage Proportional Input Current Shaping of a VIENNA Rectifier Eliminating Controller Multipliers. In: IEEE Transactions on Industrial Electronics, 52(1), pp. 162–170.
  • Moallem, M., Mirzaeian, B., Mohammed, O. A., and Lucas, C. (2001). Multi-Objective Genetic-Fuzzy Optimal Design of PI Controller in the Indirect Field Oriented Control of an Induction Motor. IEEE Transactions on Magnetics, 37(5), pp. 3608–3612s.
  • Mukherjee, D. and Kastha, D. (2015). Voltage Sensorless Control of the Three-Level Three-Switch Vienna Rectifier with Programmable Input Power Factor. IET Power Electronics, 8(8), pp. 1349–1357.
  • Patin, N., Vido, L., Monmasson, E., Louis, J., Gabsi, M. and Lecrivain, M. (2008). Control of a Hybrid Excitation Synchronous Generator for Aircraft Applications. IEEE Transactions on Industrial Electronics, 55(10), pp. 3772–3783.
  • Pavel, C. C., Lacal-Arántegui, R., Marmier, A., Schüler, D., Tzimas, E., Buchert, M., Jenseit, W. and Blagoeva, D. (2017). Substitution Strategies for Reducing the Use of Rare Earths in Wind Turbines. Resources Policy, 52, pp. 349–357.
  • Prajapat, G. P., Senroy, N. and Kar, I. N. (2021). Estimation Based Enhanced Maximum Energy Extraction Scheme for DFIG-Wind Turbine Systems. Sustainable Energy, Grids and Networks, 26, p. 100419.
  • Rahimi, M. (2017). Modeling, Control and Stability Analysis of Grid Connected PMSG Based Wind Turbine Assisted with Diode Rectifier and Boost Converter. International Journal of Electrical Power & Energy Systems, 93, pp. 84–96.
  • Rajaei, A. H., Mohamadian, M., Dehghan, S. M. and Yazdian, A. (2011). PMSG-based Variable Speed Wind Energy Conversion System Using Vienna Rectifier. European Transactions on Electrical Power, 21, pp. 954–972.
  • Rao, Y. T., Chakraborty, C. and Sengupta, S. (2021). Performance and Stability of Brushless Induction Excited Synchronous Generator Operating in Self-Excited Mode for Wind Energy Conversion System. IEEE Transactions on Energy Conversion, 36(2), pp. 919–929.
  • Reddy, D. and Ramasamy, S. (2018). Design of RBFN Controller Based Boost Type Vienna Rectifier for Grid-Tied Wind Energy Conversion System. IEEE Access, 6, pp. 3167–3175.
  • Sabrina, U., Schullerus, G. and Soenmez, E. (2021). Active Damping in Series Connected Power Modules with Continuous Output Voltage. Power Electronics and Drives, 6(41), pp. 314–335.
  • Shipurkar, U., Strous, T. D., Polinder, H., Ferreira, J. A. and Veltman, A. (2017). Achieving Sensorless Control for the Brushless Doubly Fed Induction Machine. IEEE Transactions on Energy Conversion, 32(4), pp. 1611–1619.
  • Szulawski, P. and Koczara, W. (2016). Synchrogenverter - Parallel Connection of Synchronous Generator and Power Converter with Energy Storage. Power Electronics and Drives, 1, pp. 69–78.
  • Xu, J. and Xie, S. (2018). LCL-Resonance Damping Strategies for Grid-Connected Inverters with LCL Filters: A Comprehensive Review. Journal of Modern Power Systems and Clean Energy, 6, pp. 292–305.
  • Yang, G. and Zhu, Y. (2010). Application of a Matrix Converter for PMSG Wind Turbine Generation System. The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, pp. 185–189.
  • Yaramasu, V., Wu, B., Sen, P. C., Kouro, S., and Narimani, M. (2015). High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies. Proceedings of the IEEE, 103(5), pp. 740–788.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d407be72-e9c6-4a93-bb38-77465c0be321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.