Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article analyzes the safety of flight operations for a promising aircraft with a nuclear propulsion system. The initial experimental models of atomic-powered aircraft underwent operational testing during the first half of the twentieth century but were subsequently deemed unsuitable due to the heightened radiation and nuclear risks to humans and the environment. In light of the growing urgency surrounding the use of alternative fuels for engines, including those used in aircraft, it would be prudent to consider the resumption of the project to develop aircraft with a new-generation nuclear propulsion system utilizing low- enriched fuel. The results are characterized by the following features and distinctive features that allow the problem under study to be solved: - The occurrence of the initiating factors of an accident at a 6 MW nuclear power reactor with low-enriched nuclear fuel will not entail an aviation accident or incident involving increased human exposure and environmental radiation contamination. - An aviation accident accompanied by a nuclear and radiation accident with destruction of the reactor core is possible only if an aircraft crashes into a nuclear propulsion system, the probability of which does not exceed the risk of a similar event involving aircraft using conventional aviation fuel. The results of nuclear propulsion system safety analyses would also be in demand in energy, research and development, and other areas where nuclear reactors are used.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
125--138
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Civil Aviation Academy; 44, Zakarpatskaya str., 050039 Almaty, Kazakhstan
autor
- Civil Aviation Academy; 44, Zakarpatskaya str., 050039 Almaty, Kazakhstan
autor
- Civil Aviation Academy; 44, Zakarpatskaya str., 050039 Almaty, Kazakhstan
autor
- Civil Aviation Academy; 44, Zakarpatskaya str., 050039 Almaty, Kazakhstan
autor
- Civil Aviation Academy; 44, Zakarpatskaya str., 050039 Almaty, Kazakhstan
Bibliografia
- 1. Kudryashev, V.A. & Kim, D.S. Determination of the total effective dose of external and internal exposure by different ionizing radiation sources. Radiation Protection Dosimetry. 2019. Vol. 187(1). P. 129-137. DOI: 10.1093/rpd/ncz170.
- 2. Guidez, J. & Saturnin, A. Evolution of the collective radiation dose of nuclear reactors from the 2nd through to the 3rd generation and 4th generation sodium-cooled fast reactors. EPJ Nuclear Sci. Technol. 2017. Vol. 32(3). P. 1-8. DOI: 10.1051/epjn/2017024.
- 3. Paluszek, M. & Price, A. & Koniaris, Z. & Galea, C. & Thomas, S. & Cohen, S. & Stutz, R. Nuclear fusion powered Titan aircraft. Acta Astronautica. 2023. Vol. 210. P. 82-94. DOI: 10.1016/j.actaastro.2023.04.029.
- 4. Nuclear-powered aircraft? Power Engineering Journal. 1995 Vol. 9(2). P. 102-104. DOI: 10.1049/pe:19950212.
- 5. Rom, F.E. Status of the nuclear powered airplane. Journal of Aircraft. 1971. Vol. 8(1). P. 26-33. DOI: 10.2514/3.44222.
- 6. Larson, J.W. Advanced nuclear turbojet powerplant characteristics summary for supersonic aircraft. Office of Scientific and Technical Information (OSTI). 1959. DOI: 10.2172/1245002.
- 7. Larson, J.W. Pratt and Whitney Aircraft Nuclear JT-11 Turbojet Engine Performance with Advanced Nuclear System. Office of Scientific and Technical Information (OSTI). 1959. DOI: 10.2172/12086630.
- 8. Bridgman, C. A graduate design course on aircraft nuclear survivability. Aircraft Systems and Technology Conference. 1981. DOI: 10.2514/6.1981-1727.
- 9. Winebarger, R. & Neely, Jr. W. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses. Aircraft Design Systems and Operations Meeting. 1984. DOI: 10.2514/6.1984-2498.
- 10. Zhou, X. & Lv, J. & Cheng, H. & Fan, G. & Liu, J. Experimental study on the influence of initial state parameters on the start-up and heat transfer characteristics of separated heat pipe system. Annals of Nuclear Energy. 2024. Vol. 208. No. 110810. DOI: 10.1016/j.anucene.2024.110810.
- 11. Fukuda, K. Possible criticality scenario and its mechanism of the Windscale Works criticality accident in 1970 analyzed by computational fluid dynamics and Monte Carlo neutron transport. Annals of Nuclear Energy. 2024. Vol. 208. No. 110748. DOI: 10.1016/j.anucene.2024.110748/.
- 12. Liu, Z. & Liang, J. & Zhang, H. & Wu, W. & Zhang, H. & Wang, Z. & Liu, T. Monte Carlo transport correction for graphite-moderated nuclear reactors using the Cumulative Migration Method. Annals of Nuclear Energy. 2024. Vol. 208. No. 110813. DOI: 10.1016/j.anucene.2024.110813.
- 13. Wang, J. & Lin, R. & Chen, X. & Kuang, G. & Yao, X. & Li, Zh. Study on evaluation method of body injury in emergency landing of aircraft. Taiyuan University of technology. 2022. Vol. 53(2). P. 338-344. DOI: 10.16355/j.cnki.issn1007-9432tyut.2022.02.019.
- 14. Yevseiev, S. & Milov, O. & Zviertseva, N. & Pribyliev, Y. & Lezik, O. & Komisarenko, O. & Nalyvaiko, A. & Pogorelov, V. & Katsalap, V. & Husarova, I. Development of the concept for determining the level of critical business processes security. Eastern-European Journal of Enterprise Technologies. 2023. Vol. 9(121). P. 21-40. DOI: 10.15587/1729-4061.2023.274301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d40342d5-8270-49fb-909f-b1cff239ff20
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.