PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Biochemically Enhanced Oil Recovery Technology for Oil Fields – A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd kierunków rozwoju biochemicznych metod wspomagania wydobycia ropy naftowej ze złóż ropnych
Języki publikacji
EN
Abstrakty
EN
Crude oil, a major source of energy, is being exploited as a driver of the economy throughout the world. Being a limited resource, the price of crude oil increases constantly and the exploitation of mature reservoirs becomes essential in order to meet the ever-increasing energy demands. As conventional recovery methods are not sufficient to fulfil the growing needs, there is an incessant demand for developing new technologies which can help in efficient tertiary recovery in old reservoirs. Petroleum biotechnology has been emerging as a branch that can provide solutions to major problems in the oil industry, including increasing oil production from marginal oil wells. The enhanced oil recovery (EOR) method comprises four methods – chemical, thermal, miscible, and immiscible gas flooding – as well as microbial interference to increase recovery of the remaining hydrocarbons trapped in reservoir rocks. Biochemically enhanced oil recovery comprises an array of blooming technologies for tertiary oil recovery methods which is eco-friendly, cost-effective, and efficient in extracting the residual oil trapped in reservoir rocks. Biochemical enhanced oil recovery (BcEOR) is based on the principle of using biochemical by-products produced by microbial species to enhance oil recovery, etc. All these technologies work on the principles of reducing viscosity, increasing permeability, modifying solid surfaces, emulsifying through adherence to hydrocarbons, and lowering interfacial tension. BcEOR technologies either employ the beneficial microorganism itself or the biochemical by-products produced by the microbial species to enhance tertiary oil recovery. This review paper discusses the chronological development of biologically enhanced oil recovery and its various mechanisms.
PL
Ropa naftowa jest wykorzystywana na całym świecie jako główne źródło energii. Ze względu na ograniczone zasoby ropy naftowej jej cena stale rośnie, a eksploatacja ze złóż dojrzałych staje się niezbędna do zaspokojenia ciągle zwiększającego się zapotrzebowania na energię. Ponieważ konwencjonalne metody wydobycia nie wystarczają do zaspokojenia coraz większych potrzeb, istnieje nieustanne zapotrzebowanie na rozwój nowych technologii, które mogą pomóc w efektywnym wspomaganiu wydobycia ze starych złóż metodami trzecimi. Ostatnio biotechnologia naftowa staje się gałęzią, która dostarcza rozwiązań dotyczących głównych problemów przemysłu naftowego, w tym zwiększenia wydobycia ropy z brzeżnych odwiertów ropnych. Wspomaganie wydobycia ropy naftowej (EOR) obejmuje cztery rodzaje metod: chemiczne, termiczne, tzw. mieszające i niemieszające wypieranie ropy gazem, a także oddziaływanie mikrobiologiczne w celu zwiększenia wydobycia węglowodorów uwięzionych w skałach złożowych. Biochemiczne metody wspomagania wydobycia ropy naftowej to szereg rozwijających się technologii dla trzecich metod wspomagania wydobycia, które są przyjazne dla środowiska, racjonalne pod względem kosztów i efektywne, jeżeli chodzi o wydobycie ropy rezydualnej uwięzionej w skałach złożowych. Biochemiczne wspomaganie wydobycia ropy naftowej (BcEOR) oparte jest na zasadzie, zgodnie z którą biochemiczne produkty uboczne wytwarzane przez gatunki drobnoustrojów są wykorzystywane do wspomagania wydobycia ropy naftowej itp. Wszystkie te technologie działają na takich zasadach jak: zmniejszenie lepkości, zwiększenie przepuszczalności, modyfikacja powierzchni ciał stałych, emulgowanie poprzez adhezję do węglowodorów, obniżenie napięcia międzyfazowego. Technologie BcEOR albo wykorzystują pożyteczny mikroorganizm jako taki, albo wykorzystują biochemiczne produkty uboczne wytwarzane przez gatunki drobnoustrojów w trzecich metodach wspomagania wydobycia ropy naftowej. W niniejszym artykule przeglądowym omówiono chronologiczny rozwój biologicznych metod wspomagania wydobycia ropy naftowej i ich różne mechanizmy.
Czasopismo
Rocznik
Strony
63--74
Opis fizyczny
Bibliogr. 109 poz.
Twórcy
  • Petroleum Biotechnology Centre (Jaivalaya) Research & Development Department, Oil India Limited
  • Petroleum Biotechnology Centre (Jaivalaya) Research & Development Department, Oil India Limited
Bibliografia
  • Abe F., 2007. Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Bioscience, Biotechnology and Biochemistry, 71(10): 2347–2357.
  • Abe F., Kato C., Horikoshi K., 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol, 7, 447–453.
  • Al-Wahaibi Y.M., Gratttoni C.A., Muggeridge A.H., 2006. Drainage and imbibition relative permeabilities at near miscible condition. J. Petroleum Sci. Eng., 53: 239–253.
  • Awan A.R., Teigland R., Kleppe J., 2008. A Survey of North Sea enhanced-oil-recovery projects initiated during the years 1975 to 2005. SPE Res Eval & Eng., 11(3): 497–512.
  • Banat I.M., 1995. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Biores. Technol., 51: 1–12.
  • Bartlett D.H., 2002. Effect of pressure on in vivo microbial processes. Biochimica Biophysica Acta-Protein Structure and Molecular Enzymology, 1596(1–2): 367–381.
  • Beckmann J.W., 1926. The action of bacteria on mineral oil. Ind. Eng. Chem. News, 4: 3.
  • Behesht M., Roostaazad R., Farhadpour F., Pishvaei M.R., 2008. Model development for MEOR process in conventional non-fractured reservoirs and investigation of physic-chemical parameter effects. Chem. Eng. Tech., 7: 953–963.
  • Belyaev S.S., 1983. The dynamics of development of aerobic and anaerobic bacteria during an oil-bearing stratum to enhance oil recovery. [In:] Yen T.F (Chairman), Symposium on Biological Pressures Related to Petroleum Recovery. Div. Pet. Chem., Am. Chem. Soc., Seattle, Wash., March 20–25: 810–812.
  • Belyaev S.S., Borzenkov I.A., Nazina T.N., Rozanova E.P., Glumov I.F., Ibatullin R.R., 2004. Use of microorganisms in the biotechnology for enhancement of oil recovery. Microbiol. (Maik Nauka Interperiodica), 73: 590–598.
  • Brock T.D., 1969. Microbial growth under extreme conditions. Sym. Soc. Gen. Microbiol., 19: 15–41.
  • Brown L.R., 2010. Microbial enhanced oil recovery. Curr. Opinion Microbiol. 13: 316–320.
  • Brown L.R., Vadie A.A., Stephens J.O., 2002. Slowing production decline and extending the economic life of an oil field: A- New MEOR Technology. Paper presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, April 2000. DOI: 10.2118/59306-MS.
  • Bryant S.L., Lockhart T.P., 2002. Reservoir engineering analysis of microbial enhanced oil recovery. Soc. Pet. Eng. Reservoir Eval. Eng., 5: 365–374.
  • Bryant R.S., Stepp A.K., Bertus K.M., Burchfield T.E., Dennis M., 1993. Microbial enhanced water flooding field pilots. Dev. Pet. Sci., 39: 289–306.
  • Bubela B., 1983. Combined effect of temperature and other environmental stresses on microbiologically enhanced oil recovery. [In:] Donaldson E.C., Clarks J.B. (Eds.), Proceedings, 1982 International Conference on Microbial Enhancement of Oil Recovery. NTIS, Springfield, Va: 219.
  • Cayol L., Ollivier B., Patel B.K.C., Ravot G., Magot M., Ageron E., Grimont P.A., Garcia J.L., 1995. Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., Isolated from a Deep Subsurface French Oil Well, a Proposal To Reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and an Emended Description of Thermoanaerobacter brockii. Int. Journal of Systematic and Evolutionary Microbiology, 45: 783–789.
  • Chang M.M., Chung F., Bryant R., Gao H., Burchfield T., 1991. Modeling and laboratory investigation of microbial transport phenomena in porous media. [In:] SPE 22845 presented at 66th Annual Technical Conference and exhibition of SPE in Dallas Texas.
  • Coates J.D., Chisholm J.L., Knapp R.M., McInerney M.J., Menzie D.E., Bhupathiraju V.K., 1993. Microbially enhanced oil recovery field pilot, Payne, County, Oklahoma. Developments in Petroleum Sci., 39: 197–205.
  • Cooper D.G., Zajic J.E., Gerson D.F., Manninen K.I., 1980. Isolation and identification of biosurfactants produced during anaerobic growth of Clostridium pasteurianum. J. Ferm. Tech. 58: 83–86.
  • Cui K., Zhang Z., Zhang Z., Sun S., Li H., Fu P., 2019. Stimulation of indigenous microbes by optimizing the water cut in low permeability reservoirs for green and enhanced oil recovery. Scientific Reports, 9: 15772.
  • da Silva I.P.G., de Melo M.A., Luvizotto J.M., Lucas E.F., 2007. Polymer Flooding: A Sustainable Enhanced Oil Recovery in the Current Scenario. Society of Petroleum Engineers. DOI: 10.2118/107727-MS.
  • Desai J.D., Banat I.M., 1997. Microbial production of surfactant and their commercial potential. Microbiol. Mol. Biol. Rev., 61(1): 47–64.
  • Dienes M., Jaranyi I., 1973. Increase of oil recovery by introducing anaerobic bacteria into the formation, Demjen field, Hungary. Koolaj es Foldgaz, 106: 205–208.
  • Dietrich F.L., Brown, F.G., Zhou Z.H., Maure M.A., 1996. Microbial EOR Technology Advancement: Case Studies of Succesful Projects. SPE 36746. Proceedings of the SPE Annual Technical Conference and Exhibition. Society of Petroleum Eng. Richardson, Texas.
  • Donaldson E.C. (eds.), 1991. Microbial enhancement of oil recovery- recent advances. Development in Petroleum Science, 31: 530.
  • Donaldson E.C., Grula E.A., 1985. There are bugs in my oil well. Chemtech: 602–604.
  • Dostalek M., Spurny M., 1958. Bacterial release of oil: A preliminary trials in an oil deposit. Fol. Biol. (Praha), 4: 166.
  • Dostalek M., Staud M., Rosypalova A., 1957. Effects of micro.ovrddot. organisms on petroleum pydrocarbons. Ceskoslov. Mikrobiol.
  • Fredrickson, J.K., McKinley J.P., Bjornstad B.N., Long P.E., Ringelberg D.B., White D.C., Krumholz L.R., Suflita J.M., Colwell F.S., Lehman R.M., Phelps T.J., Onstott T.C., 1997. Pore-size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale-sandstone sequence, northwestern New Mexico. Geomicrobiology Journal, 14(3): 183–202.
  • Gran K., Bjorlykke K., Aagaard P., 1992. Fluid Sainity and Dynamics in the North Sea and Haltenbanken basins derived from well logs. Geological Society, London, Special Publications, 65: 327–338.
  • Groudeva V., Ivanova, I., Groudev S., Uzunov G. 1993. Enhanced oil recovery by stimulating the activity of the indigenous microflora of oil reservoirs. In Biohydrometallurgical Technologies vol II, Ed A.E. Thorma, M.L. Apel and C.L. Brierley. A publication of TMSMinerals-Metals-Matarials, p. 349–356.
  • Grula E.A., Rusell H.H., Bryant D., Kenaga M., Hart M., 1983. Isolation and screening of Clostridia for possible use in microbially enhanced oil recovery. [In:] Donaldson E.C., Clarks J.B. (Eds.), Proceedings, 1982 International Conference on Microbial Enhancement of Oil Recovery. NTIS, Springfield: 43–47.
  • Hart R.T., Fekete T., Flock D.L., 1960. The plugging effect of bacteria in sandstone systems. Can. Min. Metal. Bull. July: 495–501.
  • He Z., She Y., Xiang T., Xue F., Mei B., Li Y., Ju B., Mei H., Yen T.F., 2000. MEOR pilot sees encouraging results in Chinese oil field. J. Oil Gas, 98: 46–52.
  • Hitzman D.O., 1983. Petroleum microbiology and the history of its role in EOR. [In:] Donaldson E.C., Clarks J.B. (Eds.), Proceedings, 1982 International Conference on Microbial Enhancement of Oil Recovery. NTIS, Springfield, VA: 162–218.
  • Hitzman D.O., 1988. Review of microbial enhanced oil recovery field trials. Proc. Symposium on Application of Microorganisms to Petroleum Technology, Bartlesville, OK, August 12–13, 1987. Burchfiled, F.E. and Bryant, R.S. (Eds.).
  • Hitzman D.O., 1991. Microbial enhanced oil recovery – the time is now. Developments in Petroleum Science, 31: 11–20.
  • Hitzman D.O., Sperl G.T., 1994. New microbial technology for enhanced oil recovery and sulfide prevention and reduction. SPE/DOE27752. Proceedings of the 9th Sympossium on Improved Oil Recovery. Society of Petroleum Engineers, Richardson, Texas.
  • Islam M., 1990. Mathematical modeling of microbial enhanced oil recovery. [In:] 65th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, September 23–26, New Orleans, LA.
  • Ivanov M.V., Belyaev S.S., Borzenkov I.A., Glumov I.F., Ibatulin P.B., 1993. Additional oil production during field trials in Russia. [In:]
  • Premuzic, E.T., Woodhead, A. (Eds.), Microbial Enhancement of Oil Recovery-Recent Advances. Elsevier, Amsterdam: 373–381.
  • Ivanov M.V., Belyaev S.S., Laurinavichus K.S., Obraztova A.Y., Gorlatov S.N., 1982. Microbiologiya, 4: 336.
  • Jack T.R., Stehmeier L.G. 1988 Selective plugging in watered out reservoirs. In Proceedings of symposium Appication of microorganism in Petroleum Technology. Bartlesville Oklahoma US Department of energy NIPER 351.CONF-870858. Ed. Burchfield T.E. and Bryant R.S. pp. VII/1-IIV/14.
  • Janshekar, H. 1985: Microbial enhanced oil recovery processes. [In:] Zajic J.E., Donaldson E.C. (Eds.), Microbes and Oil Recovery. Bioresources Publications, El Paso, Texas: 54–84.
  • Jenneman G.E., Clark J.B., 1992. The effect of in-situ pore pressure on MEOR processes. SPE 24203. SPE/DOE Enhanced Oil Recovery Symposium, 2224 April 1992, Tulsa, Oklahoma: 15.
  • Jenneman G.E., Geverrtz D., Davey M.E., Clark J.B., Wood W.A., Stevens J.C., Tankersley C., 1995. Development and application of microbial selective plugging process. [In:] Bryant R.S., Sublette K.L. (Eds.), Proceedings 5th International Conference on Microbial Enhanced Oil Recovery and Related Problems for Solving Environmental Problems (CONF-9509173). National Technical Information Service. Springfield, VA: 7–26.
  • Jimoh I.A., Rudyk S.N., Søgaard E.G., 2011. Microbial fluid rock interactions in chalk samples and salinity factor in divalent Ca2+ ions release for microbial enhanced oil recovery purposes. Chemical Engineering Transactions, 24: 889–894.
  • Kalish P.J., Stewart J.A., Rogers W.F., Bennett E.O., 1964. The effects of bacteria on sandstone permeability. J. Petroleum Technology, 16: 805–814.
  • Karaskiewicz J., 1975. Studies on increasing petroleum oil recovery from Carpathian deposits using bacteria. Nafta (Petroleum), 21: 144–149.
  • Kaster K.M., Bonaunet K., Berland H., Kjeilen-Eilertsen G., Brakstad O.G., 2009. Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leeuwenhoek, 96: 423–439.
  • Kaster K.M., Hiorth A., Eilertsen G.K., Boccadoro K., Lohne A., Berland H., Stavland A., Brakstad O.G., 2012. Mechanisms Involved in
  • Microbially Enhanced Oil Recovery. Transport in Porous Media, 91: 59–79.
  • Kawarai T., Wachi M., Ogino H., Furukawa S., Suzuki K., Ogihara H., Yamasaki M., 2004. SulAindependent filamentation of E.coli during growth after release from high hydrostatic pressure treatment. Applied Microbiology and Biotechnology, 64(2): 255–262.
  • Kowalewski E., Rueslatten I., Steen K.H., Bødtker G., Torsaeter O., 2006. Microbial improved oil recovery-bacterial induced wettability and interfacial tension effects on oil production. J. Pet. Sci. Eng., 52: 275–286.
  • Kropp K., Davidova I.A., Suflita J.M., 2000. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate reducing bacteria enrichment culture. Appl. Environmetal Biotech., 66: 5393–5398.
  • Krumholz L.R., 2000. Microbial communities in deep surface. Hydrogeology Journal, 8(1): 4–10.
  • Kuznetsov S.I. (Ed.), 1961. Geologic activity of microorganisms (translated from Russian by Consultants Bureau, New York, 1962). Tr. Inst. Mikrobiol. Akad. Nauk SSSR, IX: 112.
  • Kuznetsov S.I., Ivanov M.V., Lyalikova N.N., 1962. Intoduction to Geological Microbiology (translated from Russian by Broneer P.T., Oppenheimer C.H.). Introduction to Geological Microbiology, McGraw-Hill, New York: 252.
  • Lazar I., 1978. Microbiological methods in secondary oil recovery. European Symposium on Enhanced Oil Recovery, Edinburgh, July 5–7, Institute of Offshore Engineering and Herriot-Watt University (Eds.): 279–287.
  • Lazar I., 1991. MEOR field trials carried out over the world during the past 35 years. [In:] Donaldson, E.C. (Ed.), Microbial Enhancement of Oil Recovery-Recent Advances, Elsevier Science, Amsterdam: 485–530.
  • Lazar I., 1998. International MEOR applications for marginal wells. Pakistan J. Hydrocarbon Res., 10: 11–30.
  • Lazar I., Constantinescu P., 1985. Field Trials Results of Microbial Enhanced Oil Recovery. [In:] Zajic J.E., Donaldson E.C. (Eds.). Microbes and Oil Recovery, vol. 1. International Bioresources Journal, 122–144.
  • Lazar I., Petrisor I.G., Yen T.F., 2007. Microbial enhanced oil recovery. Petroleum Science and Technology, 25(11): 1353–1366.
  • Li Q., Kang C., Wang H., Liu C., Zhang C., 2002. Application of microbial enhanced oil recovery technique to the Daqing oilfield. Biochem. Eng. J., 11: 197–199.
  • Marquis R.E., 1976. High pressure microbial physiology. Adv. Microbial Physiol., 14: 159–241.
  • Marquis R.E., 1983. Barotolerance and microbial enhancement of oil recovery. [In:] Zajic J.E., Cooper D.C., Jack T.R., Kosaric N. (Eds.).
  • Microbial Enhanced Oil Recovery. PennWell Publishing Co., Tulsa, Oklahoma: 8–13.
  • Marshall S.L., 2008. Fundamental aspects of microbial enhanced oil recovery: A literature survey, CSIRO Land and Water Floreat, Western Australia: 1–42.
  • Maudgalya S., Knapp, R.M., McInerney, M.J., 2007: Microbial enhanced oil recovery technologies: A review of the past, present and future. Society of Petroleum Engineers. DOI: 10.2118/106978-MS.
  • Maudgalya S., McInerney M.J., Knapp R.M., Nagle D.P., Folmsbee M.M., 2005. Tertiary oil recovery with microbial biosurfactant treatment at low permeability Berea sandstone cores. Society of Petroleum Engineers. DOI: 10.2118/94213-MS.
  • McInerney M.J., Maudgalya S., Nagle D.P, Knapp R.M., 2002. Critical assessment of the use of microorganisms for oil recovery. Recent Res. Dev. Microbiol., 6: 269–284.
  • McInerney M.J., Sublette K.L., 1997. Petroleum microbiology: Biofouling, souring and improved oil recovery. [In:] Hurst C.J., Knudsen G.R.,
  • McInerney M.J., Stetzenbach L.D., Walter M.V. (Eds), Manual Environmental Microbiology. ASM: Washington, D.C.: 600–607.
  • Molina-Höppner A., Sato T., Kato C., Gänzle M.G., Vogel R.F., 2003. Effect of pressure on cell morphology and cell division of lactic acid bacteria. Extremophiles, 7: 511–516.
  • Monod J., 1949. The Growth of Bacterial Cultures. Annual Review of Microbiology, 3: 371.
  • Montiel C., Quintero R., Aburto J., 2009. Petroleum biotechnology: Technology trends for the future. African Journal of Biotechnology, 8(25): 2653–2666.
  • Moses V., 1991. MEOR in the filed: why so little? Microbial Enhancement of Oil Recovery. Recent Advances. Development in Petroleum Science, 31, Donaldson E.C. (Eds.), Amsterdam: Elsevier: 21–28.
  • Moses V., Brown M., Burton C.C., Gralla D.S., Cornellius C. 1993: Microbial hydraulic acid fracturing. Developments in Petroleum Science, 39: 207–229.
  • Nazina T.N., Ivanova A.E., Mityushina L.L., Belyaev S.S., 1994. Analysis of microbial community from water flooded oil field by chromatography-mass pectrometry. Mikrobiologiya, 63: 876–882.
  • Nelson L., Schneider D.R., 1993. Six years of paraffin control and enhanced oil recovery with the microbial products, Para-Bac. Developments in Petroleum Sci., 39: 355–362.
  • Nielson S.M., Shapiro A.A., Michelsen M.L., Stenby E.H., 2010. 1D simulations for microbial enhanced oil recovery with metabolite partitioning. Transp. Porous Media, 85: 785–802.
  • Oren A., 2001: The bioenergetics basis for the metabolic diversity at increasing salt concentrations: an implications for the functioning of salt lake ecosystem. Hydrobiologia, 466: 61–72.
  • Planckaert M., 2005. Oil reservoirs and oil production. [In:] Ollivier B., Magot M. (Eds.), Petroleum microbiology. ASM Press, Washington: 3–19.
  • Raiders R.A., Freeman D.C., Jenneman G.E., Knapp R.M., McInerney M.J., Menzie, D.E., 1985: The use of microorganisms to increase the recovery of oil from cores. Society of Petroleum Engineers. DOI: 10.2118/14336-MS.
  • Riebeling V., Thauer R.K., Jungermann K., 1975. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor in growing Clostridium pasteurianum. Eur. J. Biochem., 55: 445–453.
  • Roberts M.F., 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Syst., 1: 5.
  • Rudyk S.N., Søgaard E.G., 2011. Microbial Enhanced Oil Recovery [In:] Whitby C., Skovhus T.L., (Eds.), Applied Microbiology and Molecular Biology in Oilfiel Systems. Springer, Dordrecht: 179–187.
  • Russel J.B., Dombrowski D.B., 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Applied and Environmental Microbiology, 39(3): 604–610.
  • Senyukov V.M., Yulbarisov M.E., Taldykina N.N., Shissherina P.E., 1970. Microbial method of treating petroleum deposit containing highly mineralized stratal waters. Mikrobiologiya, 39: 705–710.
  • Sheehy A.J., 1991. Microbial Physiology and Enhanced Oil recovery. Developments in Petroleum Science, 31: 37–44.
  • Shibulal B., Al-Bahry S.N., Al-Wahaibi Y.M., Elshafie A.E., Al-Bemani A.S., Joshi S.J., 2014. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review. The Scientific World Journal, 309159: 12.
  • Shibulal B., Al-Bahry S.N., Al-Wahaibi Y.M., Elshafie A.E., Al-Bemani A.S., Joshi S.J., 2018. Microbial-Enhanced Heavy Oil Recovery under Laboratory Conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 Isolated from Heavy Oil Fields. Colloids Interfaces, 2(1): 1.
  • Statistical Review of World Energy, 2019 (PDF). Retrieved 08 January 2020. Thomas S., 2007. Enhanced Oil Recovery – An Overview. Oil & Gas Science and Technology, 63(1): 9–19.
  • Updegraff D.M., 1983. Plugging and penetration of petroleum reservoir rock by microorganism. [In:] Donaldson E.C., Clark J.B. (Eds), Proceedings, 1982 International Conference on Microbial Enhancement of Oil Recovery. NTIS Springfield, Va.: 80–85.
  • Updegraff D.M., Wren B.G., 1954. The release of oil from petroleum bearing materials by sulfate reducing bacteria. Appl. Microbiol., 2: 307–322.
  • Vermooten J.S.A., Verweij J.M., Simmelink H.J., 2004. Quality control, correction and analysis of temperature borehole data in offshore
  • Netherlands. A. Quality control and correction of temperature borehole data; B. Analysis and interpretation of corrected temperatures.
  • Netherlands Institute of Applied Geoscience TNO – National Geological Survey. Internal TNO-report NITG 04-043-B0506.
  • Wagner, M., 1991. Microbial enhancement of oil recovery from carbonate reservoirs with complex formation characteristics. Dev. Pet. Sci. 31, 387–398.
  • Wagner M., Lungerhausen D., 1995. Development and application of a new biotechnology of the molasses in-situ method- detailed evaluation of selected wells in the Romashkino carbonate reservoir. [In:] Proceeding of Conference, 5th International Conference on Microbial enhanced oil recovery and related biotechnology for solving environmental problems. Tulsa, U.S.A.
  • Wagner M., Lunherhausen D., Nowak, U., Ziran, B., 1993. Microbially improved oil recovery from carbonate. [In:] Torma A.E., Appel M.L., Brierley C.I. (Eds.), BIohydrometalurgical Technologies, Vol. II. Wallande, Pennysylvania: A Publication of TMS, MineralsMetals-Materials: 695–710.
  • Wang X.Y., Xue Y., Dai G., Zhao L., Wang Z.S., Wang J.L., Sun T.H., Li X.J., 1995. Application of bio-huff and puff technology at Jilin oil field. [In:] Bryant R.S., Sublette K.L. (Eds.), The 5th International Conference on Microbial Enhanced Oil Recovery and Related Problems for Solving Environmental Problems (CONF-9509173). National Technical Information Service. Springfiled, VA: 15–128.
  • Wang X.Y, Xue Y., Xie S. 1993. Characteristics of enriched cultures and their application to MEOR field tests. Development in Petroleum Science, 39: 335–348.
  • Xue Y., Xu Y., Liu Y., Ma Y., Zhou P., 2001. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic saccharolytic thermophilic bacterium isolated from a hot spring in Tengcong, China, Int. J. Syst. Evol. Microbiol., 51: 1335–1341.
  • Yaranyi I., 1968. Bezamolo a nagylengyel tezegeben elvegzett koolaj mikrobiologiai kiserletkrol. M. All. Faldany Intezet Evi Jelentese A., Evval: 423–426.
  • Yarbrough H.F., Coty V.F., 1983. Microbially enhanced oil recovery from the Upper Cretaceous Nacatoch Formation, Union County, Arkanas. [In:] Donaldson E.C., Clark J.B. (Eds.), Proceedings, 1982. International Conference on Microbial Enhancement of Oil Recovery. NTIS, Springfield, VA: 149–153.
  • Yen T., 1990. Microbial enhanced oil recovery-principle and practice. Boca Raton FL: CRC Press Inc.
  • Youssef N.H., Elshahed M.S., McInerney M.J., 2009. Microbial Processes in Oil Fields: Culprits, Problems, and Opportunities. [In:] Laskin A.I., Sariaslani S., Gadd G.M. (Eds.): Burlington: Academic Press, Adv. Appl. Microbiol., 66: 141–251.
  • Zajic J.E., Copper C.D., Jack T.R., Kosaroc N., 1983. Microbial Enhanced Oil Recovery. Tusla, OK.
  • Zendehboudi S., Bahadori A., 2017. Production Methods in Shale Oil Reservoirs. [In:] Shale Oil and Gas Handbook: Elsevier Inc.
  • Zhang X., Xiang T., 2010. Review of microbial enhanced oil recovery technology and development in China. International Journal of Petroleum Science and Technology, 4(1): 61–80.
  • Zobell C.E., 1947. Bacterial release of oil from oil-bearing materials, Part I and II. World Oil, 126(13): 36–47 (I); 35–41 (II).
  • Zvyagintsev D.G., 1970. Growth of microbes in capillaries of various sizes under continuous flow and static conditions. Mikrobiologiya, 42: 60–64.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4021a3c-25dd-4f37-b587-28b5401f0046
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.