PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A multiscale experimental analysis of mechanical properties and deformation behavior of sintered copper-silicon carbide composites enhanced by high-pressure torsion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experiments were conducted to investigate, within the framework of a multiscale approach, the mechanical enhancement, deformation and damage behavior of copper–silicon carbide composites (Cu–SiC) fabricated by spark plasma sintering (SPS) and the combination of SPS with high-pressure torsion (HPT). The mechanical properties of the metal–matrix composites were determined at three different length scales corresponding to the macroscopic, micro- and nanoscale. Small punch testing was employed to evaluate the strength of composites at the macroscopic scale. Detailed analysis of microstructure evolution related to SPS and HPT, sample deformation and failure of fractured specimens was conducted using scanning and transmission electron microscopy. A microstructural study revealed changes in the damage behavior for samples processed by HPT and an explanation for this behavior was provided by mechanical testing performed at the micro- and nanoscale. The strength of copper samples and the metal–ceramic interface was determined by microtensile testing and the hardness of each composite component, corresponding to the metal matrix, metal–ceramic interface, and ceramic reinforcement, was measured using nano-indentation. The results confirm the advantageous effect of large plastic deformation on the mechanical properties of Cu–SiC composites and demonstrate the impact on these separate components on the deformation and damage type.
Rocznik
Strony
776--794
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawinskiego, 02-106 Warsaw, Poland
  • Warsaw University of Technology, 141 Woloska Str, 02-507 Warsaw, Poland
  • National Centre for Nuclear Research, 7 Soltana Str, 05-400 Otwock/Swierk, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawinskiego, 02-106 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawinskiego, 02-106 Warsaw, Poland
  • Lukasiewicz Research Network, Institute of Microelectronics and Photonics, Center of Electronic Materials Technology, 133 Wolczynska Str, 01-919 Warsaw, Poland
  • Warsaw University of Technology, 141 Woloska Str, 02-507 Warsaw, Poland
  • Warsaw University of Technology, 141 Woloska Str, 02-507 Warsaw, Poland
  • Warsaw University of Technology, 141 Woloska Str, 02-507 Warsaw, Poland
autor
  • Department of Design and Engineering, Faculty of Science and Technology, Bournemouth University, Poole, Dorset BH12 5BB, UK
  • Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK
  • Materials Research Group, Department of Mechanical Engineering, University of Southampton, Southampton SO17 1BJ, UK
Bibliografia
  • [1] Jiang X, Liu W, Li Y, Shao Z, Luo Z, Zhu D, Zhu M. Microstructures and mechanical properties of Cu/Ti3SiC2/C/grapheme nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing. Compos B Eng. 2018;141:203–13.
  • [2] Cai C, He S, Li L, Teng Q, Song B, Yan C, Wei Q, Shi Y. In-situ TiB/Ti-6Al-4V composites with a tailored architecture produced by hot isostatic pressing: Microstructure evolution, enhanced tensile properties and strengthening mechanisms. Compos B Eng. 2019;164:546–58.
  • [3] Razavi M, Farajipour AR, Zakeri M, Rahimipour MR, Fir -ouzbakht AR. Production of Al2O3–SiC nano-composites by spark plasma sintering. J Span Ceram Glass Soc. 2017;56:186–94.
  • [4] Naplocha K. Self-propagating high-temperature synthesis (SHS) of intermetallic matrix composites. In: Inter-metallic matrix composites, properties and applications 2018;203–220.
  • [5] Zurnachyan AR, Kharatyan SL, Khachatryan HL, Kirakosyan AG. Self-propagating high temperature synthesis of SiC–Cu and SiC–Al cermets: role of chemical activation. Int J Refract Metals Hard Mater. 2011;29:250–5.
  • [6] Sabirov I, Kolednik O, Pippan R. Homogenization of metal matrix composites by high-pressure torsion. Metall Mat Trans A. 2005;36:2861.
  • [7] Xiong L, Shuai J, Liu K, Hou Z, Zhu L, Li W. Enhanced mechanical and electrical properties of super-aligned carbon nanotubes reinforced copper by severe plastic deformation. Compos B Eng. 2019;160:315–20.
  • [8] Han JK, Li X, Dippenaar R, Liss KD, Kawasaki M. Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. Mater Sci Eng A. 2018;714:84–92.
  • [9] Bazarnik P, Romelczyk B, Huang Y, Lewandowska M, Langdon TG. Effect of applied pressure on microstructure development and homogeneity in an aluminium alloy processed by high-pressure torsion. J Alloy Compd. 2016;688:736–45.
  • [10] Stolyarov VV, Zhu YT, Lowe TC, Islamgaliev RK, Valiev RZ. Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Mater Sci Eng A. 2000;282:78–85.
  • [11] de Castro MM, Carvalho AP, Pereira PHR, Isaac Neta AC, Figueiredo RB, Langdon TG. Consolidation of magnesium and magnesium alloy machine chips using high-pressure torsion. Mater Sci Forum. 2018;941:851–6.
  • [12] Ahn B, Zhilyaev AP, Lee HJ, Kawasaki M, Langdon TG. Rapie synthesis of an extra hard metal matrix nanocomposite at ambient temperature. Mater Sci Eng A. 2015;635:109–17.
  • [13] Bazarnik P, Nosewicz S, Romelczyk-Baishya B, Chmielewski M, Strojny-Nędza A, Maj J, Huang Y, Lewandowska M, Langdon TG. Effect of spark plasma sintering and high-pressure torsion on the microstructural and mechanical properties of a Cu–SiC composite. Mater Sci Eng A. 2019;766:138350.
  • [14] Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Rotundo F, Toschi S, Singh AW. Metal Matrix Nano-composites: An Overview. Singapore: Springer; 2017.
  • [15] Chmielewski M, Pietrzak K, Teodorczyk M, Nosewicz S, Jarzabek DM, Zybała R, Bazarnik P, Lewandowska M, Strojny-Nedza A. Effect of metallic coating on the properties of copper-silicon carbide composites. Appl Surf Sci. 2017;421A:159–69.
  • [16] Chmielewski M, Pietrzak K, Strojny-Nędza A, Kaszyca K, Zybala R, Bazarnik P, Lewandowska M, Nosewicz S. Microstructure and thermal properties of Cu-SiC composite materials depending on the sintering technique. Sci Sinter. 2017;49:11–22.
  • [17] el Aal MIA. Effect of high-pressure torsion processing on the microstructure evolution and mechanical properties of consolidated micro size Cu and Cu-SiC powders. Adv Powder Technol. 2017;28:2135–50.
  • [18] Jahedi M, Paydar MH, Knezevic M. Enhanced microstructural homogeneity in metal-matrix composites developed under high-pressure-double-torsion. Mater Charact. 2015;104:92–100.
  • [19] Chmielewski M, Nosewicz S, Wyszkowska E, Kurpaska Ł, Strojny-Nędza A, Piątkowska A, Bazarnik P, Pietrzak K. Analysis of the micromechanical properties of copper-silicon carbide composites using nanoindentation measurements. Ceram Int. 2019;45(7A):9164–73.
  • [20] Rodríguez C, Fernández M, Cabezas JG, García TE, Belzunce FJ. The use of the small punch test to solve practical engineering problems. Theoret Appl Fract Mech. 2016;86:109–16.
  • [21] Rasche S, Kuna M. Improved small punch testing and parameter identification of ductile to brittle materials. Int J Press Vessels Pip. 2015;125:23–34.
  • [22] Jarząbek DM, Chmielewski M, Wojciechowski T. The measurement of the adhesion force between ceramic particles and metal matrix in ceramic reinforced-metal matrix composites. Campos A Appl Sci Manuf. 2015;76:124–30.
  • [23] Oliver C, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation. J Mater Res. 1992;7:1564–83.
  • [24] Nosewicz S, Romelczyk-Baishya B, Lumelskyj D, Chmielewski M, Bazarnik P, Jarząbek DM, Pietrzak K, Kaszyca K, Pakieła Z. Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide composites. Int J Solids Struct. 2019;160:187–200.
  • [25] Schöberl T, Sabirov I, Pippan R. Nanoindentation applied on a tungsten–copper composite before and after high-pressure torsion. Inter J Mater Res. 2005;96(9):1056–62.
  • [26] Tian YZ, Li JJ, Zhang P, Wu SD, Zhang ZF, Kawasaki M, Langdon TG. Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion. Acta Mater. 2012;60:269–81.
  • [27] Čížek J, Janeček M, Srba O, Kužel R, Barnovská Z, Procházka I, Dobatkin S. Evolution of defects in copper deformed by high-pressure torsion. Acta Mater. 2011;59(6):2322–9.
  • [28] Valiev R, Islamgaliev R, Alexandrov IV. Bulk Nanostructured Materials from Severe Plastic Deformation. Progr Mater Sci. 2000;45:103–89.
  • [29] Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: a model for predicting their yield strength. Scripta Mater. 2006;54:1321–6.
  • [30] Mirza FA, Chen DL. A unified model for the prediction of field strength in particulate-reinforced metal matrix nanocomposites. Materials. 2015;8:5138–53.
  • [31] Zhang H, Maljkovic N, Mitchell BS. Structure and interfacial properties of nanocrystalline aluminum/mullite composites. Mater Sci Eng A. 2002;326:317–23.
  • [32] Chawla KK. Interfaces in metal matrix composites. Compos Interface. 2012;4(5):287–98.
  • [33] Zhang X, Zhang B, Mu Y, Shao S, Wick CD, Ramachandran BR, Meng WJ. Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater. 2017;138:224–36.
  • [34] Li L, Xia Z. Role of interfaces in mechanical properties of ceramic matrix composites. In: Advances in ceramic matrix composites. 2018;355–374.
  • [35] Akbarpour MR, Alipour S. Wear and friction properties of spark plasma sintered SiC/Cu nanocomposites. Ceram Int. 2017;43(16):13364–70.
  • [36] Kang HK, Kang SB. Thermal decomposition of silicon carbide in a plasma-sprayed Cu/SiC composite deposit. Mater Sci Eng A. 2006;428:336–45.
  • [37] Chromik RR, Neils WK, Cotts EJ. Thermodynamic and kinetic study of solid state reactions in the Cu–Si system. J Appl Phys. 1999;86:4273–81.
  • [38] Goh C, Wei J, Lee L, Gupta M. Properties and deformation behavior of Mg-Y2O3 nanocomposites. Acta Mater. 2007;55:5115–21.
  • [39] Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A. 2012;531:112–8.
  • [40] Vaidya RU, Chawla KK. Thermal expansion of metal-matrix composites. Compos Sci Technol. 1994;50:13–22.
  • [41] Arsenault RJ, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng.1986;81:175–87.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3fe60a7-7353-46b5-8c0a-3c589c533e76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.