PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modelling of destress blasting – a state-of-the-art review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a proactive mine safety measure against the occurrence of rockburst, destress blasting has been applied to numerous mining conditions to precondition highly stressed rock mass to mitigate the risk of rockburst occurrence in deep mines as well as in deep underground constructions. However, the application of destress blasting mostly depends on engineering experience, while its mechanism and efficiency have not been well understood. Rapid advances in computer technology have made numerical simulation an economical and effective method to study the rock blasting effect. Enormous research efforts have been made to numerically investigate the blasting fracture mechanism, optimize blasting design, and assess the efficiency of destress blasting. This review focuses on the state-of-the-art progress in numerical modelling associated with destress blasting over the last two decades. Some commonly used modelling approaches for destressing blasting are compared and reviewed. Currently, two different ways of modelling based on static and dynamic modes are typically used to study the effect of blasting. In the static method, destress blasting is simulated by modifying the rock mass’s stiffness and strength properties to obtain the post-blast stress state in the destressed zone. The dynamic modelling technique focuses on the dynamic fracture process of coals and rock masses, during which the predetermination of the damage induced by blasting is not necessary. Moreover, the extent of damage zones around the blast hole can be precisely estimated in the dynamic modelling method by considering time-varying blast pressure and strain rate dependency on the strength of rock mass but at the cost of increased computation and complexity. Besides, different destress blasting modelling methods, generally classified into continuum-based, discrete-based, and coupled methods, are compared and reviewed. The fracture mechanism of blasting in the rock mass is revealed, and the destressing efficiency of the existing destress blasting design is assessed and compared with classical results. The factors that may affect the efficiency of destress blasting are summarized. Finally, the difficulties and challenges associated with the numerical modelling of destress blasting are highlighted briefly.
Rocznik
Strony
278--297
Opis fizyczny
Bibliogr. 149 poz.
Twórcy
autor
  • State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei, China
autor
  • Department of Geomechanics and Mining Research, Institute of Geonics of the Czech Academy of Sciences, Ostrava, Czech Republic
autor
  • State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei, China
autor
  • Department of Mining and Materials Engineering, McGill University, Montreal, Canada
Bibliografia
  • [1] Konicek P, Saharan MR, Mitri H. Destress blasting in coal mining - state-of-the-art review. Procedia Eng 2011;26:179-94.
  • [2] Mitri HS. Destress blasting - from theory to practice. In: Proceedings of the 4th world congress on mechanical, chemical, and material engineering; 2018.
  • [3] Zhou J, Li X, Mitri HS. Evaluation method of rockburst: state-of-the-art literature review. Tunn Undergr Space Technol 2018;81:632-59.
  • [4] Zhang ZX. Rock fracture and blasting: theory and applications. Butterworth-Heinemann; 2016.
  • [5] Saharan MR, Mitri H. Destress blasting as a mines safety tool: some fundamental challenges for successful applications. Procedia Eng 2011;26:37-47.
  • [6] Drover C, Villaescusa E, Onederra I. Face destressing blast design for hard rock tunnelling at great depth. Tunn Undergr Space Technol 2018;80:257-68.
  • [7] Saharan MR, Mitri HS. Numerical procedure for dynamic simulation of discrete fractures due to blasting. Rock Mech Rock Eng 2008;41(5):641-70.
  • [8] Tang B, Mitri HS, Marwan J, Comeau W. 3-dimensional modelling of destress blasting. In: 2nd South African Rock Engineering Symposium. In: SARES'99 Johannesburg, South Africa, Hagan; 1999.
  • [9] Deng XF, Zhu JB, Chen SG, Zhao ZY, Zhou YX, Zhao J. Numerical study on tunnel damage subject to blast-induced shock wave in jointed rock masses. Tunn Undergr Space Technol 2014;43:88-100.
  • [10] Onederra IA, Furtney JK, Sellers E, Iverson S. Modelling blast induced damage from a fully coupled explosive charge. Int J Rock Mech Min 2013;58:73-84.
  • [11] Sainoki A, Emad MZ, Mitri HS. Study on the efficiency of destress blasting in deep mine drift development. Can Geotech J 2017;54(4):518-28.
  • [12] Saharan MR. Dynamic modelling of rock fracturing by destress blasting. Canada: McGill University; 2004.
  • [13] Vennes I, Mitri H. Geomechanical effects of stress shadow created by large-scale destress blasting. J. Rock Mech. Geotech. Eng Times 2017;9(6):1085-93.
  • [14] Wu C, Lu Y, Hao H. Numerical prediction of blast-induced stress wave from large-scale underground explosion. Int J Numer Anal Methods GeoMech 2004;28(1):93-109.
  • [15] Ainalis D, Kaufmann O, Tshibangu JP, Verlinden O, Kouroussis G. Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review. Rock Mech Rock Eng 2016;50(1):171-93.
  • [16] Tang B. Rockburst control using destress blasting. McGill University Montreal; 2000.
  • [17] Vennes I, Mitri H, Chinnasane DR, Yao M. Large-scale destress blasting for seismicity control in hard rock mines: a case study. Int J Min Sci Technol 2020;30(2).
  • [18] Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min 2003;40(3):283-353.
  • [19] Li X, Zhao J. An overview of particle-based numerical manifold method and its application to dynamic rock fracturing. J. Rock Mech. Geotech. Eng Times 2019;11(3):684-700.
  • [20] Ma GW, An XM. Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min 2008;45(6):966-75.
  • [21] Xie LX, Lu WB, Zhang QB, Jiang QH, Wang GH, Zhao J. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting. Tunn Undergr Space Technol 2016;58:257-70.
  • [22] Liu L, Katsabanis P. Development of a continuum damage model for blasting analysis. Int J Rock Mech Min 1997;34(2):217-31.
  • [23] Sazid M, Singh TN. Two-dimensional dynamic finite element simulation of rock blasting. Arabian J Geosci 2012;6(10):3703-8.
  • [24] Dehghan Banadaki MM, Mohanty B. Numerical simulation of stress wave induced fractures in rock. Int J Impact Eng 2012;40-41:16-25.
  • [25] Zhu Z, Mohanty B, Xie H. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min 2007;44(3):412-24.
  • [26] Cho SH, Kaneko K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min 2004;41(5):771-84.
  • [27] Cho SH, Nakamura Y, Kaneko K. Dynamic fracture process analysis of rock subjected to stress wave and gas pressurization. Int J Rock Mech Min 2004;41:433-40.
  • [28] Zhu Z, Xie H, Mohanty B. Numerical investigation of blasting-induced damage in cylindrical rocks. Int J Rock Mech Min 2008;45(2):111-21.
  • [29] Mei W, Li M, Pan PZ, Pan J, Liu K. Blasting induced dynamic response analysis in a rock tunnel based on combined inversion of Laplace transform with elasto-plastic cellular automaton. Geophys J Int 2021;225:699-710.
  • [30] Pan P, Mei W. Dynamic response analysis method, software, and applications in engineering rockmass based on CASRock. Hazard Contr Tunnel Underground Eng 2021;3(3):1-10.
  • [31] Yilmaz O, Unlu T. Three dimensional numerical rock damage analysis under blasting load. Tunn Undergr Space Technol 2013;38:266-78.
  • [32] Wang ZL, Li YC, Wang JG. Numerical analysis of blast-induced wave propagation and spalling damage in a rock plate. Int J Rock Mech Min 2008;45(4):600-8.
  • [33] Cundall P. Distinct element models of rock and soil structure. In: Brown ET, Bray J, editors. Analytical and computational methods in engineering rock mechnics. London: Allen & Unwin; 1987. p. 129-63.
  • [34] Donze F, Bouchez J, Magnier S. Modeling fractures in rock blasting. Int J Rock Mech Min 1997;34(8):1153-63.
  • [35] Sarracino R. Modeling of shock-and gas-driven fractures induced by a blast using bonded assemblies of spherical particles. In: International Symposium on Rock fragmentation by blasting; 1996.
  • [36] Potyondy D, Cundall P, Sarracino R. Modeling of shock- and gas-driven fractures induced by a blast using bonded assemblies of spherical particles. In: Mohanty B, editor. Rock fragmentation by blasting. Rotterdam: A.A. Balkema; 1996.
  • [37] Wang ZL, Konietzky H. Modelling of blast-induced fractures in jointed rock masses. Eng Fract Mech 2009;76(12):1945-55.
  • [38] Shi GH. Discontinuous Deformation Analysis: a new numerical model for the statics and dynamics of deformable block structures. Eng Comput 1992;9(2):157-68.
  • [39] Gu J, Zhao Z. Considerations of the discontinuous deformation analysis on wave propagation problems. Int J Numer Anal Methods GeoMech 2009;33(12):1449-65.
  • [40] Song J, Kim K. Micromechanical modeling of the dynamic fracture process during rock blasting. Int J Rock Mech Min 1996;33(4):387-94.
  • [41] Chen S, Zhao J. A study of UDEC modelling for blast wave propagation in jointed rock masses. Int J Rock Mech Min 1998;35(1):93-9.
  • [42] Deng XF, Chen SG, Zhu JB, Zhou YX, Zhao ZY, Zhao J. UDEC-AUTODYN hybrid modeling of a large-scale underground explosion test. Rock Mech Rock Eng 2014;48(2): 737-47.
  • [43] Ledoux L. The role of stress waves and gases in the development of fragmentation. 2016.
  • [44] Minchinton A, Lynch PM. Fragmentation and heave modelling using a coupled discrete element gas flow code. Fragblast 1997;1(1):41-57.
  • [45] Mitelman A, Elmo D. Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach. J. Rock Mech. Geotech. Eng Times 2014;6(6):565-73.
  • [46] Rockfield. Elfen user manual. UK: Swansea; 2007.
  • [47] Fakhimi A, Lanari M. DEMeSPH simulation of rock blasting. Comput Geotech 2014;55:158-64.
  • [48] Furtney J, Cundall P, Chitombo G. Developments in numerical modeling of blast induced rock fragmentation: up- dates from the HSBM project. In: Proceedings of the 9th International symposium on rock fragmentation by blasting; 2009.
  • [49] Sellers E, Furtney J, Onederra I, Chitombo G. Improved understanding of explosive-rock interactions using the hybrid stress blasting model. J S Afr Inst Min Metall 2012;112(8):721-8.
  • [50] Saharan MR, Mitri HS, Jethwa JL. Rock fracturing by explosive energy: review of state-of-the-art. Fragblast 2006;10(1-2):61-81.
  • [51] Kutter HK, Fairhurst C. On the fracture process in blasting. Int J Rock Mech Min 1971;8(3):181-202.
  • [52] Lee EL, Hornig HC, Kury JW. Adiabatic expansion of high explosive detonation products. 1968.
  • [53] Lee E, Finger M, Collins W. JWL Equation of State coefficients for high explosives. 1973.
  • [54] Liu K, Wu C, Li X, Li Q, Fang J, Liu J. A modified HJC model for improved dynamic response of brittle materials under blasting loads. Comput Geotech 2020:123.
  • [55] Wei XY, Zhao ZY, Gu J. Numerical simulations of rock mass damage induced by underground explosion. Int J Rock Mech Min 2009;46(7):1206-13.
  • [56] Jiang N, Zhou C, Luo X, Lu S. Damage characteristics of surrounding rock subjected to VCR mining blasting shock. Shock Vib 2015;2015:1-8.
  • [57] Mousavi SAAA, Al-Hassani STS. Finite element simulation of explosively-driven plate impact with application to explosive welding. Mater Des 2008;29(1):1-19.
  • [58] Brown WB, Feng Z, Braithwaite M. Williamsburg equation of state for modelling non-ideal detonation. J Phys IV 1995;5:C4-209-4-214.
  • [59] Sharpe JA. The production of elastic waves by explosion pressures. I. Theory and empirical field observations. Geophysics 1942;7(2):144-54.
  • [60] Duvall WI. Strain-wave shapes in rock near explosions. Geophysics 1953;18(2):310-23.
  • [61] Jiang J, Blair D, Baird G. Dynamic response of an elastic and viscoelastic full-space to a spherical source. Int J Numer Anal Methods GeoMech 1995;19:181-93.
  • [62] Trivino L, Mohanty B. Seismic radiation from explosive charges in the near-field: results from controlled experiments. In: Proc. 35th Annual Conference on Explosives and Blasting Technique, Denver; 2009.
  • [63] Zhu WC, Gai D, Wei CH, Li SG. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage. J Nat Gas Sci Eng 2016;36:1253-63.
  • [64] Simons DA. Comparison of calculational approaches for structural deformation in jointed rock. Int J Numer Anal Met 1994;18(5):327-44.
  • [65] Yan P, Zhou W, Lu W, Chen M, Zhou C. Simulation of bench blasting considering fragmentation size distribution. Int J Impact Eng 2016;90:132-45.
  • [66] Resende R, Lamas L, Lemos J, Calçada R. Stress wave propagation test and numerical modelling of an underground complex. Int J Rock Mech Min 2014;72:26-36.
  • [67] Xia X, Li HB, Li JC, Liu B, Yu C. A case study on rock damage prediction and control method for underground tunnels subjected to adjacent excavation blasting. Tunn Undergr Space Technol 2013;35:1-7.
  • [68] Clark GB. Principles of rock fragmentation. New York: John Wiley & Sons; 1987.
  • [69] Bhandari S. On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting. Acta Astronaut 1979;6(3-4):365-83.
  • [70] Mohammadi S, Pooladi A. A two-mesh coupled gas flow-solid interaction model for 2D blast analysis in fractured media. Finite Elem Anal Des 2012;50:48-69.
  • [71] Munjiza A. Discrete elements in transient dynamics of fractured media. Swansea University; 1992.
  • [72] Ning Y, Yang J, Ma G, Chen P. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock Mech Rock Eng 2011;44(4):483-90.
  • [73] Yuan W, Su X, Wang W, Wen L, Chang J. Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces. J Pet Sci Eng 2019;177:699-710.
  • [74] Sim Y, Cho GC, Song KI. Prediction of fragmentation zone induced by blasting in rock. Rock Mech Rock Eng 2017;50(8):2177-92.
  • [75] Goodarzi M, Mohammadi S, Jafari A. Numerical analysis of rock fracturing by gas pressure using the extended finite element method. Petrol Sci 2015;12(2):304-15.
  • [76] Nilson R, Proffer W, Duff R. Modelling of gas-driven fractures induced by propellant combustion within a borehole. Int J Rock Mech Min 1985;22(1):3-19.
  • [77] Munjiza A, Latham J, Andrews K. Detonation gas model for combined finite-discrete element simulation of fracture and fragmentation. Int J Numer Meth Eng 2000;49(12):1495-520.
  • [78] Preece D, Taylor L. Complete computer simulation of crater blasting including fragmentation and rock motion. In: Proceedings of the fifth annual symposium on explosives and blasting research, society of explosives engineers. New Orleans, USA; 1989.
  • [79] Mohammadi S, Pooladi A. Non-uniform isentropic gas flow analysis of explosion in fractured solid media. Finite Elem Anal Des 2007;43(6-7):478-93.
  • [80] Mohanty B, Dehghan Banadaki M. Characteristics of stress- wave-induced fractures in controlled laboratory-scale blasting experiments. In: Wang X, editor. Proc. 2nd Asian-pacific symp. on blasting techniques. Beijing: Metallurgical Industry Press; 2009.
  • [81] Yang P, Xiang J, Chen M, Fang F, Pavlidis D, Latham JP, et al. The immersed-body gas-solid interaction model for blast analysis in fractured solid media. Int J Rock Mech Min 2017;91:119-32.
  • [82] Hustrulid WA. Blasting principles for open pit mining: general design concepts. Balkema; 1999.
  • [83] Pramanik R, Deb D. Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation. Rock Mech Rock Eng 2014;48(4):1683-98.
  • [84] Lanari M, Fakhimi A. Numerical study of contributions of shock wave and gas penetration toward induced rock damage during blasting. Comput Times Part Mech 2015;2(2):197-208.
  • [85] Pisarenko GS, Lebedev A. Deformation and strength of materials in a complex stress state. Kiev: Naukova Dumka; 1976.
  • [86] Krajcinovic D, Silva MAG. Statistical aspects of the continuous damage theory. Int J Solid Struct 1982;18(7):551-62.
  • [87] Cho SH, Ogata Y, Kaneko K. Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min 2003;40(5):763-77.
  • [88] Feng X-T, Pan P-Z, Zhou H. Simulation of the rock micro-fracturing process under uniaxial compression using an elasto-plastic cellular automaton. Int J Rock Mech Min 2006;43(7):1091-108.
  • [89] Pan P-Z, Feng X-T, Hudson JA. Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata. Int J Rock Mech Min 2009;46(4):674-85.
  • [90] Zhu WC, Wei CH, Li S, Wei J, Zhang MS. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int J Rock Mech Min 2013;59:179-90.
  • [91] Wang J, Yin Y, Esmaieli K. Numerical simulations of rock blasting damage based on laboratory-scale experiments. J Geophys Eng 2018;15(6):2399-417.
  • [92] Hu Y, Lu W, Chen M, Yan P, Yang J. Comparison of blast-induced damage between presplit and smooth blasting of high rock slope. Rock Mech Rock Eng 2013;47(4):1307-20.
  • [93] Xie LX, Lu WB, Zhang QB, Jiang QH, Chen M, Zhao J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn Undergr Space Technol 2017;66:19-33.
  • [94] Yang JH, Yao C, Jiang QH, Lu WB, Jiang SH. 2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation. Tunn Undergr Space Technol 2017;70:221-32.
  • [95] Johnson G, Holmquist T. A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures.. In: Shock wave and high-strain-rate phenomena in materials (paper 1075-1081); 1992.
  • [96] Johnson GR, Holmquist TJ. An improved computational constitutive model for brittle materials. In: AIP conference proceedings. American Institute of Physics; 1994.
  • [97] Holmquist T, Johnson G, Cook W. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures. In: Proceedings of the 14th international symposium on ballistics. Quebec City. Sweden: National Defense Research Establishment; 1993. p. 591-600.
  • [98] Riedel W, Thoma K, Hiermaier S, Schmolinske E. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes. In: Proceedings of the 9th international symposium on the effects of munitions with structures. Berlin-Strausberg, Germany; 1999.
  • [99] Xie LX, Yang SQ, Gu JC, Zhang QB, Lu WB, Jing HW, et al. JHR constitutive model for rock under dynamic loads. Comput Geotech 2019;108:161-72.
  • [100] Xie LX, Zhang QB, Gu JC, Lu WB, Yang SQ, Jing HW, et al. Damage evolution mechanism in production blasting excavation under different stress fields. Simulat Model Pract Theor 2019:97.
  • [101] Polanco-Loria M, Hopperstad OS, Børvik T, Berstad T. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model. Int J Impact Eng 2008;35(5):290-303.
  • [102] Islam M, Swaddiwudhipong S, Liu Z. Penetration of concrete targets using a modified Holmquist-Johnson-Cook material model. Int J Comp Meth-Sing 2012;9(4):1250056.
  • [103] Liu Y, Ma A, Huang F. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets. Int J Impact Eng 2009;36(3):438-46.
  • [104] Yi C, Sj€oberg J, Johansson D, Petropoulos N. A numerical study of the impact of short delays on rock fragmentation. Int J Rock Mech Min 2017;100:250-4.
  • [105] Zhu WC, Liu J, Sheng JC, Elsworth D. Analysis of coupled gas flow and deformation process with desorption and Klinkenberg effects in coal seams. Int J Rock Mech Min 2007;44(7):971-80.
  • [106] Zou D. Mechanisms of rock breakage by blasting. In: Theory and technology of rock excavation for civil engineering; 2017. p. 205-33.
  • [107] Jung WJ, Utagawa M, Ogata Y, Seto M, Katsuyama K, Miyake A, et al. Effects of rock pressure on crack generation during tunnel blasting. J Jpn Explos Soc 2001;62(3):138-46.
  • [108] Park D, Jeon B, Jeon S. A numerical study on the screening of blast-induced waves for reducing ground vibration. Rock Mech Rock Eng 2008;42(3):449-73.
  • [109] Banadaki MMD. Stress-wave induced fracture in rock due to explosive action. University of Toronto; 2010.
  • [110] Srirajaraghavaraju RR. Transmitted pressure and resulting crack network in selected rocks from single-hole blasts in laboratory-scale experiments. University of Toronto; 2014.
  • [111] Olsson M, Nie S, Bergqvist I, Ouchterlony F. What causes cracks in rock blasting? Fragblast 2002;6(2):221-33.
  • [112] Yamin GA. Field measurements of blast induced damage in rock. Canada: University of Toronto; 2004.
  • [113] Yang R, Ding C, Yang L, Lei Z, Zhang Z, Wang Y. Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation. Int J Rock Mech Min 2018;112:47-54.
  • [114] Comeau W, Mitri HS, Mohammed MM, Tang B. Worldwide survey of destress blasting practice in deep hard rock mines. In: 25th Annual Conference on Explosives and Blasting Technique; 1999.
  • [115] Tang B, Mitri H. Numerical modelling of rock preconditioning by destress blasting. In: Proceedings of the Institution of Civil Engineers-Ground Improvement. 5; 2001. p. 57-67 (2).
  • [116] Saadatmand Hashemi A. Continuum damage modeling of rocks under blast loading. Queen’s University; 2020.
  • [117] Kim SJ. An experimental investigation of the effect of blasting on the impact breakage of rocks. Queen’s University; 2010.
  • [118] Paventi M, Mohanty B. Mapping of blast-induced fractures in rock. In: Proceedings of the seventh international symposium on rock fragmentation by blasting, Fragblast; 2002.
  • [119] Wang ZL, Li YC, Shen RF. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int J Rock Mech Min 2007;44(5):730-8.
  • [120] Nielsen K, Kristiansen J. Blasting-crushing-grinding: optimisation of an integrated comminution system. In: Mohanty B, editor. Proc 5th int symp on rock fragmentation by blasting; 1996.
  • [121] Nielsen K, Malvik T. Grindability enhancement by blast-induced microcracks. Powder Technol 1999;105(1-3):52-6.
  • [122] Bergmann O, Riggle J, Wu F. Model rock blasting deffect of explosives properties and other variables on blasting results. Int J Rock Mech Min 1973;10(6):585-612.
  • [123] Khademian A, Bagherpour R. Environmentally sustainable mining through proper selection of explosives in blasting operation. Environ Earth Sci 2017;76(4).
  • [124] Zhu Z. Numerical prediction of crater blasting and bench blasting. Int J Rock Mech Min 2009;46(6):1088-96.
  • [125] Liu L, Chen M, Lu W, Hu Y, Leng Z. Effect of the location of the detonation initiation point for bench blasting. Shock Vib 2015;2015:1-11.
  • [126] Long Y, Zhong M, Xie Q, Li X, Song K, Liao K. Influence of initiation point position on fragmentation by blasting in iron ore. In: Rock Fragmentation by Blasting: Fragblast. 10; 2012. p. 111.
  • [127] Olsson M, Bergqvist I. Crack lenghts from explosives in small diameter boreholes. In: International symposium on rock fragmentation by blasting; 1993.
  • [128] Lu W, Leng Z, Chen M, Yan P, Hu Y. A modified model to calculate the size of the crushed zone around a blast-hole. J S Afr Inst Min Metall 2016;116(5):412-22.
  • [129] Li X, Liu K, Yang J. Study of the rock crack propagation induced by blasting with a decoupled charge under high in situ stress. Adv Civ Eng 2020:1-18.
  • [130] Fourney W, Barker D, Holloway D. Model studies of explosive well stimulation techniques. Int J Rock Mech Min 1981;18(2):113-27.
  • [131] Persson PA, Holmberg R, Lee J. Rock blasting and explosives engineering. CRC press 1993.
  • [132] Minchinton A. On the influence of fundamental detonics on blasting practice. In: 11th international symposium on rock fragmentation by blasting. Sydney; 2015.
  • [133] Esen SA. non-ideal detonation model for evaluating the performance of explosives in rock blasting. Rock Mech Rock Eng 2008;41(3):467-97.
  • [134] Aimone C. Rock breakage: explosives, blast design. SME mining engineering handbook. Littleton: Society of Mining Engineers; 1992. p. 722-46.
  • [135] Zhao JJ, Zhang Y, Ranjith PG. Numerical simulation of blasting-induced fracture expansion in coal masses. Int J Rock Mech Min 2017;100:28-39.
  • [136] Mitri H, Saharan MR. Destress Blasting in hard rock mines-a state-of-the-art review. Cim Bull 2005;98(1091):1-8.
  • [137] Zhao Z, Zhang Y, Bao H. Tunnel blasting simulations by the discontinuous deformation analysis. Int J Comp Meth-Sing 2011;8(2):277-92.
  • [138] Saadatmand Hashemi A, Katsabanis P. The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation. Rock Mech Rock Eng 2020;53(3):1-20.
  • [139] Johansson D, Ouchterlony F. Shock wave interactions in rock blasting: the use of short delays to improve fragmentation in model-scale. Rock Mech Rock Eng 2012; 46(1):1-18.
  • [140] Melnikov N, Marchenko L, Zharikov I, Seinov N. Blasting methods to improve rock fragmentation. Acta Astronaut 1978;5(11-12):1113-27.
  • [141] Jhanwar JC. Theory and practice of air-deck blasting in mines and surface excavations: a review. Geotech Geol Eng 2011;29(5):651-63.
  • [142] Melnikov N, Marchenko L, Zharikov I. The effect of an air cavity on the motion of the ground during ejection blasting. Soviet Mining 1976;12(5):501-7.
  • [143] Liu L, Katsabanis P. Numerical modelling of the effects of air decking/decoupling in production and controlled blasting. In: Proceeding 5th international conference on rock fragmentation by blasting. Rotterdam: AA Balkema; 1996.
  • [144] Lu W, Hustrulid W. A further study on the mechanism of airdecking. Fragblast 2003;7(4):231-55.
  • [145] Chen S, Cai J, Zhao J, Zhou Y. Discrete element modelling of an underground explosion in a jointed rock mass. Geotech Geol Eng 2000;18(2):59-78.
  • [146] Li T, Pei X, Guo J, Meng M, Huang R. An energy-based fatigue damage model for sandstone subjected to cyclic loading. Rock Mech Rock Eng 2020;53(11):5069-79.
  • [147] Sazid M, Saharan M, Singh T. Enhancement of the explosive energy utilization with the application of new stemming contrivance. Int J Innovat Sci Mod Eng 2016;4(2):1-5.
  • [148] Dally JW, Fourney WL, Holloway DC. Influence of containment of the bore hole pressures on explosive induced fracture. Int J Rock Mech Min 1975;12(1):5-12.
  • [149] Cho SH. Dynamic fracture process analysis of rock and its application to fragmentation control in blasting. Hokkaido University; 2003.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3fc07a6-e22d-4c60-ba2b-ba93998838c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.