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Abstract Abstract 
As a proactive mine safety measure against the occurrence of rockburst, destress blasting has been 
applied to numerous mining conditions to precondition highly stressed rock mass to mitigate the risk of 
rockburst occurrence in deep mines as well as in deep underground constructions. However, the 
application of destress blasting mostly depends on engineering experience, while its mechanism and 
efficiency have not been well understood. Rapid advances in computer technology have made numerical 
simulation an economical and effective method to study the rock blasting effect. Enormous research 
efforts have been made to numerically investigate the blasting fracture mechanism, optimize blasting 
design, and assess the efficiency of destress blasting. This review focuses on the state-of-the-art 
progress in numerical modelling associated with destress blasting over the last two decades. Some 
commonly used modelling approaches for destressing blasting are compared and reviewed. Currently, 
two different ways of modelling based on static and dynamic modes are typically used to study the effect 
of blasting. In the static method, destress blasting is simulated by modifying the rock mass’s stiffness 
and strength properties to obtain the post-blast stress state in the destressed zone. The dynamic 
modelling technique focuses on the dynamic fracture process of coals and rock masses, during which the 
predetermination of the damage induced by blasting is not necessary. Moreover, the extent of damage 
zones around the blast hole can be precisely estimated in the dynamic modelling method by considering 
time-varying blast pressure and strain rate dependency on the strength of rock mass but at the cost of 
increased computation and complexity. Besides, different destress blasting modelling methods, generally 
classified into continuum-based, discrete-based, and coupled methods, are compared and reviewed. The 
fracture mechanism of blasting in the rock mass is revealed, and the destressing efficiency of the existing 
destress blasting design is assessed and compared with classical results. The factors that may affect the 
efficiency of destress blasting are summarized. Finally, the difficulties and challenges associated with the 
numerical modelling of destress blasting are highlighted briefly. 
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Abstract

As a proactive mine safety measure against the occurrence of rockburst, destress blasting has been applied to
numerous mining conditions to precondition highly stressed rock mass to mitigate the risk of rockburst occurrence in
deep mines as well as in deep underground constructions. However, the application of destress blasting mostly depends
on engineering experience, while its mechanism and efficiency have not been well understood. Rapid advances in
computer technology have made numerical simulation an economical and effective method to study the rock blasting
effect. Enormous research efforts have been made to numerically investigate the blasting fracture mechanism, optimize
blasting design, and assess the efficiency of destress blasting. This review focuses on the state-of-the-art progress in
numerical modelling associated with destress blasting over the last two decades. Some commonly used modelling ap-
proaches for destressing blasting are compared and reviewed. Currently, two different ways of modelling based on static
and dynamic modes are typically used to study the effect of blasting. In the static method, destress blasting is simulated
by modifying the rock mass's stiffness and strength properties to obtain the post-blast stress state in the destressed zone.
The dynamic modelling technique focuses on the dynamic fracture process of coals and rock masses, during which the
predetermination of the damage induced by blasting is not necessary. Moreover, the extent of damage zones around the
blast hole can be precisely estimated in the dynamic modelling method by considering time-varying blast pressure and
strain rate dependency on the strength of rock mass but at the cost of increased computation and complexity. Besides,
different destress blasting modelling methods, generally classified into continuum-based, discrete-based, and coupled
methods, are compared and reviewed. The fracture mechanism of blasting in the rock mass is revealed, and the des-
tressing efficiency of the existing destress blasting design is assessed and compared with classical results. The factors
that may affect the efficiency of destress blasting are summarized. Finally, the difficulties and challenges associated with
the numerical modelling of destress blasting are highlighted briefly.

Keywords: destress blasting, numerical modelling, blasting process, rock mass fracturing, destress blasting design

1. Introduction

M ining in deep underground mines continues
to face the challenges of rockburst caused by

high mining-induced stresses after excavation.
Rockburst is a common disaster in deep under-
ground mines, causing injury to mine operators and
damage to underground work. Thus, protective
measures are considered an effective way to deal
with the adverse effects of excessive stress. Different

attempts have been made to address the excessive
stresses, and destress blasting is considered the
proactive measure during underground mining
[1e4].
The concept of destress blasting was reported in

the early 1920s in the Nova Scotia province of
Canada after a devastating disaster in Springhill
Colliery. It has been viewed as an effective and
important technique for managing strainburst haz-
ards [5]. Destress blasting aims to migrate the stress
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concentration zone interior to the active mining face
to reduce the potential of rockburst by generating
blast-induced fracture networks (Fig. 1). The frac-
ture generation in rock mass requires explosive
detonation in a sequence of long holes ahead of the
face or stressed pillars. Once the explosives are
detonated in these boreholes carefully, damage and
fractures would occur in the rock mass surrounding
the blastholes. Thus, the highly fractured zone
ahead of the working faces cannot carry the high
magnitude of stress level anymore due to its low
strength and stiffness, leaving a protective barrier
between the working face and the stress concen-
tration zone.
Up to now, destress blasting has been applied to

numerous mining conditions to precondition highly
stressed rock mass in deep mines. However, the
design and implementation of destress blasting
schemes extremely rely on engineering experience.
Moreover, the field application of destress blasting in
hard rock mines encountered many difficulties and
challenges. The factors affecting destress blasting ef-
ficiency have not been grasped thoroughly. Suitable
tools or methods are imperative for the optimization
of blasting design in engineering site [6e8]. Blasting
in the rock mass is a very fast and complex process,
lasting for a few milliseconds, which involves
a complex interaction between high-energy denota-
tion products and rock mass. The dynamic response
and fracture mechanism of rocks are difficult to fully
understood based solely on theoretical and experi-
mental studies. With the rapid development of com-
puter technology and advanced numerical
techniques, more detailed and reliable predictions of
rockmass damage and fracturing under blast loading
become available [9e11]. Numerical modelling pro-
vides a convenient, economical, and relatively

accurate approach to studying destress blasting in the
underground rock mass, especially for complicated
cases where experiments and theoretical solutions
are difficult to conduct [12e14].
Numerical simulation of destress blasting helps

understand the rock dynamic response and destress
mechanism under blasting loads, which are
conducive to the field application of destress blast-
ing. To accurately predict the blast-induced damage
and assess the efficiency of destress blasting,
numerous studies have been carried out based on
different numerical tools and methods. This paper
provides a comprehensive review of previously
published literature on blasting modelling,
involving the commonly used simulation methods,
the characterization and representation of the
denotation process, rock dynamical properties, and
potential factors heavily affecting destress blasting
performance and simulation modelling results.
Moreover, based on the literature review, the frac-
ture mechanism of rock mass subjected to blasting
is first studied, and the destress efficiency of existing
destress blasting schemes is further assessed.

2. Destress blasting simulation approach and
method

In the past decades, the rapid advancement of
computation capability has facilitated the use of
computer technology to modelling complex blast-
ing in rock masses [15]. Modelling of destress
blasting requires considering several aspects to
accurately reproduce the blasting process and rock
response. Two different approaches, i.e. the static
and dynamic approaches, have been used to
perform destress blasting modelling and study the
blasting effect. In terms of the traditional static
method (i.e., equivalent modelling approach),
destress blasting is simulated by modifying the
mechanical properties and the post-blast stress
state of the rock masses in the specified destressed
zone. Note that the static modelling approach is
not complicated and requires less time and
computational capacity compared to the dynamic
method. On the other hand, based on the devel-
oped dynamic modelling technique, the dynamic
fracturing process of rock masses can be pre-
sented, in which the predetermination of the
damage scope is not necessary. Moreover, the dy-
namic modelling method can give a more precise
extent of fractured zones. These advantages make
the dynamic modelling method more accurate than
the static modelling approach. The comparison
between the two approaches is summarized in
Table 1.

Fig. 1. Schematic diagram of destress blasting.
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2.1. Static approach

For the static approach, the blasting process is not
taken into account, and the blast-induced damaged
zone is assigned artificially when modelling.
Therefore, the static approach is an equivalent
blasting modelling approach. The numerical
methods commonly used in the static approach are
the finite element method (FEM) and finite differ-
ence method (FDM).
The scope and parameters of the weakened zone

need to be obtained from actual blasting measure-
ments or empirical formulas. Two parameters,
namely rock fragmentation factor a and stress
dissipation factor b (a and b ranging from 0 to 1),
were proposed by Tang et al. [8] to weaken the rock
mass in the blast-induced fracture zone. Thus,
elastic modulus E of rocks is reduced to a E in the
destressed zone, and stress is scaled by (1-b). Then,
these scaled parameters were applied to simulate
the effect of destress blasting. Moreover, suggested
that a should be in the range 0.4e0.6, and the values
of b should be 0.4 or more [16]. Using proper a and
b, the equivalent blasting modelling approach was
successfully applied to simulate the destress blast-
ing in the mining panel [13,17]. It is worth noting
that this approach assumed a uniformly distributed
damage zone extending over the entire drift face,
but whether these destress blasting practices can
lead to full-face stress relief is questionable.

2.2. Dynamic approach

In the dynamic approach, the actual fracturing
process of rock mass under blast loads can be ob-
tained, and the assignment of the damage scope is
not necessary. Numerous in-house and commercial
software packages were utilized to model the
blasting response of rocks. Existing numerical
methods involved in dynamic modelling can be
classified into continuous, discontinuous, and
coupled methods [18].

2.2.1. Continuous method
The continuous method is suitable for problems

whose system is a continuum with an infinite degree
of freedom, whose behaviour is dominated by the
governing differential equation and the continuity
conditions at the interfaces between adjacent ele-
ments [19]. This type of method is mostly applied for
non-fractured or slightly fractured rock masses.
Continuum-based method for blasting modelling
includes FEM and FDM. Several FEM codes, such as
LS-DYNA [20,21], ABAQUS [22,23], AUTODYN
[24,25], and DFPA [26,27], have been used toTa
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simulate the rock blasting. In these codes, LS-DYNA
and AUTODYN are popular in solving non-linear
problems, such as impact, blasting, and collision.
A fluid-solid coupling algorithm was adopted to
analyseof the explosive detonation [25]. For

example, Zhu et al. [28] used the AUTODYN code to
study the fracture mechanism of rocks exposed to
blasting and optimize blasting design. Ma and An
[20] employed the LS-DYNA code to study the effect
of loading rate, distance from a free face, in situ

Fig. 2. Destress blasting modelling by CASRock: (a) computational model, (b) blasting load, and (c) rock fracturing degree (RFD) under blasting load.
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stress, and joint planes on the rock fracture patterns.
With a combination of FEM and cellular automaton
technique, a cellular automata software for engi-
neering the rock mass fracturing process (CASRock)
was developed to simulate the dynamic response of
rock mass induced by blasting [29,30]. Fig. 2 shows
the rock fracturing degree (RFD) under blasting
loads modelled by CASRock, where RFD � 0.8
means that the rock mass begins to damage, and
RFD ¼ 2.0 means that the rock mass is completely
unstable. The results showed that CASRock can well
simulate the damage and failure process of the rock
mass around the blasthole after blasting. Based on
the FDM, the FLAC and FLAC3D packages devel-
oped by ITASCA consulting are also available for
simulating blast-induced fracture zones by input-
ting various types of pressure functions [11,31]. For
example, FLAC3D was adopted by Yilmaz and Unlu
[31] to study the dimensions of the damaged zone in
rock mass exposed to dynamic stress waves. Wang
et al. [32] developed a finite difference code to
explore the wave propagation in rock plates sub-
jected to blast loads.

2.2.2. Discontinuous method
The discontinuous method includes the distinct

element method (DEM), such as particle flow code
(PFC), universal distinct element code (UDEC),
discontinuousdeformation analysis (DDA), and other
discontinuous methods e.g. lattice model. The
discrete element method (DEM) involves the defini-
tion of an assembly of indivisible elements for me-
dium and proper interactions between elements for
rock responses [33,34]. Finite displacements and ro-
tations of discrete bodies, including complete
detachment and automatically recognizing new con-
tacts, are allowed in DEM [33]. Therefore, the prop-
erties of rock mass, such as joints and porosity, and
dynamic responses characterization during blasting,
such as the large deformation, fracturing,motion, and
rotating or dispersing of elements, can be well
modelled. For example, the particle flow code PFC3D
was employed by Sarracino [35] and Potyondy et al.
[36] to study the combined effect of stress waves and
high-pressure gas flow. UDEC was adopted to
simulate the dynamical response of rock masses
subjected to stress waves [9,37]. DDA is an implicit
discrete elementmethoddeveloped formodelling the
static and dynamic behaviour of discrete block sys-
tems [38], which can solve the dynamic problem of
fractured rock mass [39]. The lattice model is another
type of discrete model. In the framework of the lattice
model, point masses or particles interconnected
through massless springs are adopted for rock ma-
terials subjected to dynamic loads [6,40].

2.2.3. Coupled method
Numerical modelling of the dynamic response of

rock mass exposed to blasting loads involves several
complicated physical processes, including the
charge explosion, the crushed zone formation, the
propagation of stress waves, and rock fracturing.
Thus, it is quite difficult to include all using one
method. Thus, the coupled method is a good choice
to take advantage of two or more numerical
methods. Wang and Konietzky [37], Chen and Zhao
[41], and Deng et al. [42] simulated the charge
explosive in the LS-DYNA or AUTODYN code to
obtain the pressure-time history on the borehole
wall. Then, the explosion history was imported to
the UDEC to simulate the dynamic response and
fracture patterns in rock masses. The coupling be-
tween the AUTODYN and PFC was also adopted by
Ledoux [43] to model the fracture patterns of grout
cylinders induced by the blast loads.
The hybrid method is another kind of coupled

method by directly coupling the mesh of FEM or
FDM with that of DEM, which becomes more and
more popular in blasting modelling of the rock mass.
Minchinton and Lynch [44] used the combined finite
element-discrete element program MBM2D to
model the rock fragmentation and heave during the
blasting process. Mitelman and Elmo [45] employed
a hybrid FEM-DEM code ELFEN to study blast-
induced damage in a circular tunnel. The ELFEN [46],
commercially developed and marketed by Rockfield
Software Ltd, allowed realistic modelling of the
transition of the rock mass from a continuum to
discontinuum, with the explicit generation of stress-
induced cracks. Fakhimi and Lanari [47] recom-
mended a hybrid discrete element-smooth particle
model (DEM-SPH) to simulate rock blasting. In their
study, the rocks and the explosive gas weremodelled
by discrete circular disks and smooth particles,
respectively, and their interaction was assumed to
follow a perfectly plastic collision. The Hybrid Stress
Blasting Model (HSBM) is a continuum and dis-
continuum hybrid approach, which combines the
explicit finite difference code FLAC and a newly
developed lattice scheme [48,49]. The code has been
developed for several years through an international
collaborative research project and seems to be
promising in capturing many features of dynamic
blasting, such as detonation, wave propagation, rock
fragmentation, and muck pile formation [6,10].

3. Characterization of stress wave and
explosive gas pressure

In the dynamic modelling approach, the charac-
terization of blast loads is an important topic. The
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explosive blasting can be characterized by two
distinct stress mechanisms:the shock wave pulse
and the explosion gas pressure. The detonation of
the explosive initiates a rapid chemical reaction and
converts the solid mass of the explosive into gaseous
products [50]. The denotation products impact the
borehole wall and generate an intense, high ampli-
tude compressive pulse. The dynamic stress field is
generated when the shock (stress) wave propagates
through the rock mass, which occurs in millisec-
onds. Then, the explosive gas would act on the
fractured zone in rock mass induced by stress
waves. The gas penetration is generally considered
quasi-static, which occurs on the order of second
[51]. The characterization of the pressure pulse and
the explosive gas pressure is extremely essential in
rock blasting modelling.

3.1. Pressure pulse on the borehole wall

Borehole wall pressure describes the expansion
work of the explosive during explosive detonation,
which is one of themost important indexes evaluating
explosive performance. However, measuring the
pressure applied to the blasthole wall is difficult due
to the lack of feasible methods and tools. Instead,
some empirical formulas or detonation theories are
commonly utilized to estimate the pressure pulse.
The explosive detonation in rocks can be classified

as ideal- and non-ideal detonation. For the ideal
detonation, the explosive shock front propagates
through the material at supersonic speed. If the
detonation is non-ideal, the reaction zone is rela-
tively long compared to that from the ideal deto-
nation, where the reaction zone is assumed to be
zero thickness [4,50]. Four commonly used ap-
proaches can be used to approximate the blasthole
wall pressure time-history: (1) equation of state;
(2) pressure decay function; (3) predefined wave
function; (4) other methods.

3.1.1. Equation of state
Thermal-chemo-physical transformation occurs

during the explosive denotation process [15]. Thus,
the equation of state (EOS) has been a common
approach for estimating the borehole wall pressure.
The Jones-Wilkens-Lee (JWL) equation is the most
commonly used due to its simple forms, experi-
mental basis, and ease of calculation [7]. The JWL
EOS is written as [52,53]:

P¼A
�
1� w

R1V

�
e�R1V þB

�
1� w

R2V

�
e�R2V þwE0

V
ð1Þ

where P is the blasthole wall pressure, and A, B, R1,
R2, and u are explosive constants. E0 is the internal
energy per initial volume (Pa), and V is the relative
volume (m3).
The JWL EOS is a high-energy combustion

model and is usually used for high explosives such
as TNT (2,4,6-trinitrotoluene), RDX (hexahydro-
1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-
1,3,5,7-tetranitro-1,3,5,7-tetrazocine) [54], which has
been widely applied to determine the pressure
pulse [55,56]. Even though its a good performance
in simulating the ideal detonation, the JWL is
considered to be inaccurate for describing non-
ideal detonation of explosives, such as ANFO (full
name: ammonium-nitrate-fuel-oil) [7,57]. Because
the reaction zone at the detonation front of the
non-ideal detonation is thick compared to that from
the ideal denotation, Williamsburg equation of
state is recommended for modelling non-ideal
detonation [57,58]. However, few studies have
used the equation of state to describe non-ideal
detonation due to the complexity of non-ideal
denotation.

3.1.2. Pressure decay function
The pressure decay function is another approach

to generate the time-decaying pressure pulse.

Table 2. The pressure decay function for time-decaying pressure pulse generation.

Reference Pressure decay function Remark

Sharpe [59] P ¼ PPe�at PP is the peak pressure applied on the borehole wall,
a is constant, and t is the time

Duvall [60] P ¼ PPðe�at � e�btÞ a and b are constants
Jiang et al. [61] P ¼ PPtne�at n and a are constants, and the peak pressure occurs

at the time tr ¼ n=a
Cho and Kaneko [26] P ¼ PPxðe�at � e�btÞ x ¼ 1=ðe�atr � e�btr Þ, and the rise time to peak pressure

tr ¼ ð1=ðb � aÞ)log(b=a)
Trivino and Mohanty [62] PðtÞ ¼ PPPuðtÞPdðtÞ

PuðtÞ ¼ e�buðt�tuÞ2n

PdðtÞ ¼ e�bdðt�tuÞ2n

bd, bu, tu, td, and n, are the parameters that define
the curves

Yilmaz and Unlu [31] P ¼ 4PPðe�4t=
ffiffi
2

p
� e�

ffiffi
2

p
4tÞ 4 is the damping factor, which can be determined

according to the rise time tr ¼ � ffiffiffi
2

p
Inð1 =2Þ=4,

where the damping factor 4 ¼ � ffiffiffi
2

p
Inð1 =2Þ= tr
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Various types of pressure decay functions have been
proposed, as listed in Table 2.

3.1.3. Predefined pressure function
Some specific functions with simple mathematical

shapes were employed to approximate the pressure
pulse from the explosive detonation. Donze et al.
[34] employed a Gaussian time function to generate
the pressure pulse. Zhu et al. [63] input triangle
wave, sine wave, and Gaussian wave into the elas-
todynamic finite element model for back-analysis,
and their results indicated that the Gaussian wave
was more suitable for high-pressure air blasting
modelling. Mitelman and Elmo [45] adopted
a triangular-shaped pulse for ELFEN modelling.
Based on a self-developed cellular automata soft-
ware for engineering rockmass fracturing process
(CASRock), Pan and Mei [30] used the triangular
load function in their dynamic version to simulate
the blast loads acting on borehole walls. Likewise,
the triangular load function was also applied to
simplify the blasting loads by Simons [64] and Yan
et al. [65]. Resende et al. [66] employed a Ricker
wavelet, a negative exponential function with no
high-frequency corners, to carry out rock blasting
modelling. However, these simple functions cannot
provide a realistic representation of the pressure
time-history from the detonation process [41].
Moreover, these simple functions carry no physical
meaning. Even that, it provides an approach to
simulate the blasting source, and their simulation
results can qualitatively reveal the dynamic
response of rock mass exposed to blast-induced
stress wave.

3.1.4. Other approaches
Besides the above mentioned, there are some

other ways to generate a pressure-time history. Xia
et al. [67] used the typical velocity history recorded
by the vibration sensors installed in the under-
ground tunnel as input for blasting modelling.
Saharan and Mitri [7] proposed the optimized
pressure profiles to describe the borehole pressure.
In their study, the peak borehole pressure and the
pressure at different time scales were required to
determine the optimized pressure-time profile. The
peak borehole pressure (Pa) was estimated as fol-
lows [68],

Pb¼r

�
VOD2

8

��
r2gc

� ð2Þ

where r is the explosive density (kg m�3), VOD is
the velocity of detonation m s�1� rc is the coupling

ratio, i.e. the explosive diameter and borehole
diameter ratio, and g is a constant, called the adia-
batic exponent. In their study, the peak pressure of
ideal and non-ideal detonation were calculated by
properly importing the value of the VOD and r of
emulsion explosive and ANFO explosive, respec-
tively. Then, the rise time was also given for ideal
and non-ideal detonation, respectively. Finally, the
peak pressure and the rise time were applied to
the proposed optimized pressure-time profiles. The
authors stated that the optimized pressure-time
profile gave a better approximation of the real
pressure pulse than the Gaussian and triangular
shape functions' profiles.

3.2. Explosive gas pressure

The explosive gas pressure plays an important
role in rock blasting, but it is considered to be
effective only when the rock mass has been pre-
conditioned by the stress wave [51,69]. The explo-
sive gas would squeeze into the blast-induced
cracks or pre-existing fractures and expand its own
space. The gas penetration process is coupled with
the deformation and propagation of existing frac-
tures or rock joints, resulting in more expansion and
penetration of explosive gas into crack openings
[70].
The gas flow in the blast-induced cracks and pre-

existing fractures is generally described with the gas
flow model. Some studies utilized simplified gas
models to calculate gas pressure. For example,
Munjiza [71] assumed constant pressure distribu-
tion near the blast hole, neglecting the pressure
change with the variable opening and length of
different cracks. Thus, the gas pressure is only
a function of the volume of the deformed hole and
fractures [72]. considered explosion gas penetration
during rock blasting by using a discontinuous
deformation analysis method. The total volume for
gas flow was tracked, and instant explosion gas
pressure was derived using a simple polytropic gas
pressure equation of state. Similarly, Yuan et al. [73]
also utilized a simple polytropic equation of state to
calculate the uniformly distributed gas pressure for
the entire crack network. Sim et al. [74] considered
two types of pressure distribution inside cracks, i.e.
uniform and linear pressure distributions, to study
the effect of gas pressure on crack propagation.
Several gas flow equations governed by conser-

vation of mass and momentum have been widely
employed to calculate explosive gas pressure. Cho
et al. [27] and Goodarzi et al. [75] used the one-
dimension transient flow proposed by Nilson et al.
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[76] to describe the gas flow through fractures.
Munjiza et al. [77] proposed a new approach to
simulate the gas flow through a cracked medium, in
which the gas flow through the cracks and fractures
around the blasthole was modelled as an equivalent
one-dimensional flow through several constant area
ducts. From a different view, gas models based on
porous media flow were also proposed. Preece and
Taylor [78] employed an equivalent porous medium
to simulate the blast-induced rock motion process.
Mohammadi and Pooladi [79] proposed a new
approach extending the original idea of the uniform
gas flow in Munjiza et al. [77] to non-uniform isen-
tropic gas flow. Later they also extended this idea
further [70].

3.3. Overall consideration of stress wave and
explosive gas pressure

Even though the respective contribution of
denotative stress and explosive gas have been
separately studied, numerical codes that can handle
both the shock wave-induced dynamic rock fracture
and the gas penetration are scarce [80]. Due to the
different mechanisms and time scales involved, it is
difficult to consider both the stress wave and
explosive gas pressure during blasting modelling
[70,81].
In recent years, some innovative studies have

been performed to solve the coupled effect of stress
wave and gas pressure in blasting modelling. The
smooth particle hydrodynamic (SPH) method, pio-
neered by Russian scientists in the late 1950s, can
handle large deformation as no real mesh exists in
the SPH method [82]; thus, it has been used to
perform blasting modelling over the years. Prama-
nik and Deb [83] studied the dynamic responses of
rocks subjected to stress waves and explosive gases
in the framework of SPH. In addition, SPH can also
be combined with other methods to describe the
blasting response of rock mass. For example,
Fakhimi and Lanari [47] utilized a bonded particle
system to mimic the dynamical reaction between
the rocks and the denotation products. By modelling
the borehole with and without a thin copper lining,
Lanari and Fakhimi [84] used an improved hybrid
SPH-BPM method to clarify the respective contri-
bution of the shock wave and denotation gas on rock
fracturing. Moreover, some other attempts have also
been presented to simulate the whole blasting pro-
cess, considering both the stress wave propagation
and explosive gas penetration. An immersed-body
method and a cohesive zone fracture model were
also adopted by Yang et al. [81] to model the stress

wave propagation, fracture extension, gasesolid
interaction, and flying fragments in a practical
complicated blasting engineering.

4. Destress blasting simulation approach and
method

4.1. Direct method

In the direct method, rocks are idealized as
a collection of structural units, such as springs,
beams, etc., which are bonded together at their
contact points. The breakage of individual structural
units or bonds represents the formation of micro-
cracks. The numerical codes for indirect approaches
are various kinds of discrete element method (DEM)
code.

4.2. Indirect method

4.2.1. Homogeneous and heterogeneous properties
Most numerical modelling studies generally treat

rock masses as continuous and homogeneous me-
diums [24,25]. However, the rock mass contains
many natural weaknesses, such as pores, grain
boundaries, and pre-existing cracks, and in-
homogeneity plays a significant role in the pro-
gressive failure process of rocks. Two approaches
are commonly used to consider the inhomogeneity
of rock materials in numerical modelling. One is to
examine the comprehensive effects of discontinu-
ities by using equivalent material properties of the
rock mass, and the other is to examine the effects of
a few discontinuities in the rock mass. Pisarenko
and Lebedev [85] presumed that many fissures and
defects exist in the rock mass, and their distribution
is random. For example, the Weibull distribution
has been widely used in numerical modelling to
computationally produce heterogeneous rock mass
[86e90]. When few joints with definite length and
spacing exist in rock masses, proper modelling of
those joints is critical [20,91].

4.2.2. Dynamic constitutive model
Rocks exposed to dynamic loads exhibit large

strains, high strain rates, and high-pressure char-
acteristics. A proper constitutive model should be
used for modelling the rock fracturing under blast-
ing loads. Currently, numerous dynamic constitu-
tive models have been developed for dynamic
responses of several materials [92e94]. In those
models, commonly used constitutive models for
rock dynamics modelling include the Johnson-
Holmquist model series [95,96], the Holmquist-
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Johnson-Cook (HJC) model [97], and the Riedel-
Hiermaier-Thoma (RHT) model [98].
The Johnson-Holmquist1(JH-1) was first proposed

to account for large deformations [95]. Based on the
JH-1 model, the Johnson-Holmquist 2 (JH-2) model
was improved, and progressive damage with
increasing deformation was considered [96]. In the
JH-2 model, the dynamic behaviour of brittle ma-
terials such as rock and ceramics under the blast
and impact loads are described through the strength
model, polynomial EOS, and damage model. The
natural logarithmic function of the equivalent strain
rate is used to describe the strain rate strengthening
effect. The JH-2 model has been widely adopted in
rock blasting modelling [91,99,100].
The HJC model was originally proposed by

Holmquist et al. [97] for impact computations and
had relatively few parameters need to be deter-
mined. Thus, it has been considered a simple and
effective model for impact, penetration, and blasting
modelling. The HJC model is mainly valid under the
compression-dominated stress states while not
suitable for reproducing tension-dominated phe-
nomena. Later, modifications of the HJC model
were conducted by considering the compressive
behaviour [101], strain-rate effects [101,102], and
tensile behaviour [103].
RHT, introduced by Riedel et al. [98], is an

advanced plasticity model capable of modelling the
dynamic behaviour of concrete or rock-like mate-
rials when subjected to high strain rate loading
conditions, such as impact and blasting [93,104]. The
shear strength of the model is described through
three limits, i.e. the initial elastic yield surface, the
failure surface, and the residual friction surface.
Thus, PHT is capable of considering pressure
hardening, strain hardening, strain rate hardening,
and strain softening.

5. Mechanism and optimization of destress
blasting

5.1. Mechanism for destress blasting

Since the 1950s, many theories have been pro-
posed to explain the fracture mechanism of rocks
exposed to blast loads. It is believed that rock
fracturing induced by the explosive explosion is
the result of both actions of denotation wave and
the explosion gases pressure. As illustrated by
[51], the fracturing of rocks around the blastholes
experiences three phases. Firstly, the shock
wave causes a strong impact on rocks near the
borehole and crushes the rocks. Then, stress

waves attenuate from shock waves, propagate in
the rocks in the radial direction and break the rocks
with long radial cracks. Finally, explosive gases
penetrate cracks and further extend radial
fractures.

5.1.1. Role of the detonation wave
Numerous numerical studies focused on the

dynamical response of rock mass subjected to blast-
induced detonation wave [20,25,34,93]. For example,
Xie et al. [93] adopted LS-DYNA to study the fracture
process and mechanism of rocks exposed to blast
loads (Fig. 3). Once an explosive charge is initiated,
the detonation wave initially acts on the borehole
wall working as a shock wave and then propagates
in the radial direction of the borehole. The shock
wave has a pressure much higher than the dynamic
compressive strength of rocks, creating a crushed
zone near the borehole (Fig. 3a). The shock wave is
attenuated to the stress wave after a considerable
amount of energy is consumed in the crushed zone.
The stress wave poses the rocks to intense radial
compression, which causes many radial cracks and
forms a fractured zone outside the crushed zone
(Fig. 3b). In the fractured zone, a large number of
radial cracks are initiated from the boundary of the
crushed zone, but only a few of them extend far due
to the stress relaxation induced by the longer ones
[105,106]. As a free face exists, the compressive stress
wave would reflect from the free face as tensile and
shear waves. If the reflected tensile wave is strong
enough to exceed the dynamic tensile strength of
rocks, the spalling phenomenon may occur back
towards the interior of the rock, as shown in Fig. 3c.
Some radial cracks may further extend when they
interact with the reflected tensile wave (Fig. 3d). The
simulated crack patterns match well with the
experimental result in Jung et al. [107]. A similar
fracture pattern under blast-induced stress wave has
also been reproduced using the discrete element
method and coupled method [40,73,108].

5.1.2. Role of explosion gases
To explain the contributions of the explosive gas in

rock blasting, many researchers have adopted
feasible workarounds. One common method in lab-
oratory tests and numerical studies is comparing the
blast-induced fracture patterns in a blasthole with
and without a thin liner or tube [109,110]. Liners
installed in the blasthole prevent gas penetration
into the stress wave-induced cracks. Thus, the
respective contribution of stress waves and explosive
gases can be understood. Series of experiments have
revealed that the additional fracturing would be
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generated in rock mass due to the explosive gas
penetration [111e113]. The conclusion has also been
validated in various numerical studies. For example,
Lanari and Fakhimi [84] studied the respective
contribution of stress waves and explosive gases by
modelling rock blasting with and without using a
thin copper lining. They found that most of the
cracks in the rock masses are induced due to
the stress wave, and the fracture increasing rate by
the stress wave is much higher than that by the
explosive gas penetration. Around 25% fewer cracks
are observed in the rock when a liner is installed in
the borehole. It also supports the earlier assertion
that a large proportion of cracks is introduced by the
stress wave. Based on the granular discrete element
method, Yuan et al. [73] revealed that the explosive
gas can enlarge the crushing area and increase the
crack aperture. Some other numerical studies also
indicated that the explosive gas can significantly
extend existing fractures and cause fragmentation
within a solid [74,75,79].

5.2. Optimization for destressing blasting design

Tang et al. [8] adopted the static approach to
compare the destress efficiency of three different

blasting patterns. The three blasting patterns, i.e.
all-perimeter destressing, full-face-and-corner des-
tressing, and wall-and-corner destressing, are
examined and compared in a parametric to situate
the full-face pattern commonly practiced in hard
rock mines, which is based on a worldwide survey
performed by Comeau et al. [114]. In the static
approach, a uniformly distributed damage zone is
assumed to extend over the entire drift face in the
traditional static modelling approach. However, it is
questionable that these destress blasting practices
can lead to a full-face destress. Sainoki et al. [11]
developed an alternative static-dynamic numerical
modelling approach and compared the resulting
destress blasting efficiency with that calculated by
the traditional static approach. The magnitude of
blast-induced damage zones from a dynamic model
was used in the alternative numerical modelling
approach. A typical destress blasting pattern was
employed. The destressed zones used in the two
approaches were presented. Then, the static meth-
odology proposed by Tang and Mitri [115] was uti-
lized to evaluate the effectiveness of destress
blasting in two approaches. The numerical results in
terms of major principle stress before and after
destressing are presented. Compared to the result

Fig. 3. Blast-induced crack patterns (a) compressive failure zone, (b) tensile failure zone, (c) spalling failure zone, (d) final failure pattern [93].
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from the traditional modelling approach, the alter-
native modelling approach generates higher post-
destressing stress. The traditional modelling
approach suggests lower post-destress stresses,
while the alternative modelling approach reduces
stresses insignificantly. The study performed by
Sainoki et al. [11] also indicated that common
destress pattern may not lead to effective stress re-
lief, and some improvement in the blasting scheme
must be made to create uniform blast energy dis-
tribution ahead of the working face.
When carrying out blasting in rock masses, radial

fractures extend in all directions in the absence of in
situ stresses. However, the high in-situ stresses
around the working face often limit blast-induced
radial fracturing and confine preexisting natural
fractures, which also inhibits the dilation of these
fractures from gas penetration. Moreover, aniso-
tropic stress tends to guide cracks to propagate
preferentially along the maximum principal stress,
which has been proven by several experiments and
numerical studies (see section 6.9). Thus, the length
and orientation of the blast-induced radial cracks are
greatly affected by in situ stresses. For example,
Saadatmand Hashemi [116] used LS-DYNA code
and performed a numerical model on a destress
blasting pattern containing two face holes with
a spacing of 2.0 m and four corner holes at 30� to the
direction of the face advancement with and without
in situ stresses. The effective connection between
radial cracks cannot be achieved due to the great
distance between the corner-drilled holes and face
holes caused, even without the in situ stresses. The
condition would get worse when the in situ stresses
are applied, and such damage packets might impose

excessive stress concentration under high in-situ
stresses and increase the probability of a rockburst
[6,116]. As mentioned above, conventional destress-
ing practices have limited efficiency in mitigating
potential strain bursts around the working face.
Drover et al. [6] proved that the conventional

destressing patterns provided limited fracturing and
interaction between the damaged zones of these
widely spaced blastholes, resulting in insufficient
stress releases, especially in the presence of anisot-
ropy stress fields. Saharan and Mitri [5] suggested
that the shear failure mechanism is more beneficial
for strain energy dissipation within rocks in destress
blasting. Based on that, Drover et al. [6] proposed
a conceptual destress blasting design that considered
the likely length and directionality of radial fracture
networks in the high-stress condition. The destress
blasting pattern consists of a series of symmetrical
rows of destressing charges, which are sub-parallel,
yet almost oblique to the major principal stress
(Fig. 4). Besides, the HSBM was used to optimize the
design parameters, such as borehole diameter,
spacing, and explosive type (Fig. 5). Note that the
fracture interaction occurred efficiently between in-
dividual destressing charges, and series of parallel
and continuous linear fracture planes were intro-
duced throughout the face. It can be seen that the
destressing concepts proposed by Drover et al. [6]
provided a new solution for optimizing the destress
blasting design under high-stress conditions.

6. Factors affecting destressing blasting

The fracturing process of rock material subjected
to blast loads is complex, and the outcome of a blast

Fig. 4. A novel destress blasting concept [6].
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is easily affected by some parameters. The most
important factors that may affect blast-induced rock
fractures should be evaluated and understood. In
destress blasting practice, the radial fracturing
generated by a confined destressing charge is
closely related to explosive properties, rock prop-
erties, natural joins, and in situ stress fields. More-
over, some other techniques initially developed for
improving blasting efficiency or special purpose are
also discussed here.

6.1. Rock materials

Rock-like materials with different mechanical
properties and structural characteristics may have
different blasting performances, depending on
various factors such as physic-mechanical proper-
ties of rock, i.e., porosity, bulking, density, elasticity,
plasticity, brittleness, rock strength, and other
properties. Cho and Kaneko [26] examine the in-
fluence of rock inhomogeneity on fracture patterns
by varying coefficients of uniformity. It has been
suggested that extensions of the radial cracks
around the borehole are related to rock in-
homogeneity. On the other hand, rock compressive
and shear strengths influence the hole expansion
and the rock crushing, and the fracture toughness of
rock mass determines radial crack extension or
propagation [4,84]. Lanari and Fakhimi [84] studied
the effect of rock strength on the blast-induced
fracture patterns using a hybrid discrete element-
smooth particle model. It has been revealed that the
blast-induced fractures in the stronger rock are
more localized than those in the weaker rock.
Moreover, the extensive damage and the resulting
debris in the weaker rock would prevent the
explosive gas from penetrating into cracks, which
weakens the effect of the explosive gas. Wei et al.
[55] numerically studied the effect of different RMR
values on fracture patterns in the rock mass, and

similar results were obtained. Mitelman and Elmo
[45] employed the hybrid FEM-DEM code to simu-
late the fracturing of different rocks subjected to
stress waves. It has been revealed that the larger
extent of fracturing occurs in the weaker rock and
dissipates more energy. Experimental results also
showed that the properties of rock materials affect
the transmitted pressure, blast-induced breakage
and fracture patterns [110,117]. Moreover, rock mass
permeability is considered the main control factor
for the penetration of explosive gas [106].
The joint structure has a great effect on the blast-

induced fracture extension. Wang and Konietzky
[37] performed the blasting modelling in the joint
rock mass, and two joint patterns, i.e. randomly
polygonal joints and orthogonal joints, were
considered. It has been found that the crack evolu-
tion exhibits strong anisotropy in the rock mass
containing orthogonal joints compared to that con-
taining randomly polygonal joints. The effect of
different joint patterns on the damage of the rock
mass subject to shock wave was also studied by
Deng et al. [9]. Therefore, destressing blasting
modelling and design should carefully consider the
rock properties and joint conditions.

6.2. Charge properties

The mass of the explosive products is directly
associated with the charge properties. The geometry
of the explosive charge, such as charge shape,
charge diameter, and charge length, significantly
affect the wave interaction in the borehole. Srir-
ajaraghavaraju [110] found that the transmitted
pressure was affected by the charge shape in his
experiments and transmitted pressure from a point
source (concentrated charge) was significantly
greater than that from the line source (detonating
cord) as the same charge weight was utilized in two
sources. However, the attenuation from the point

Fig. 5. The destressing pattern design and numerical results [6].
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source was greater due to the spherical propagation
of the wavefront of the transmitted pulse compared
to the conical spreading from the line source. At
a given explosive charge, the increase of the charge
length and charge diameter will increase the charge
weight, resulting in increasing denotation products
and explosive energy. Therefore, the peak pressure
on the borehole wall increases, leading to an
increased intensity of fracturing [109,110,118]. Both
the numerical studies and experiments have
confirmed the point [119e121]. The charge type in-
fluences explosive energy, explosive energy effi-
ciency, and velocity of denotation (VOD), thus
significantly affecting the blasting behaviour [122].
Experiments carried out by Khademian and
Bagherpour [123] also indicated that the type of
explosive has a great influence on rock fragments
and inner microcracks.

6.3. Detonation initiation location

The detonation initiation location of the charge
column affects rock fracture patterns. As the detona-
tion wave spreads along the charge, the stress wave
induced by detonation also propagates to the other
side of the hole in the conical wavefront. Thus, the
superposition of stress waves would cause a high-
energy and high-stress zone in the hole far away from
the detonation position [124,125]. Several detonation
locations, such as bottom initiation, middle initiation,
top initiation, and multi-point initiation, have been
considered in blasting operations [4]. Several nu-
merical modelling has been performed to study the
effect of detonation initiation location on rock frac-
turing [124e126]. It has been found that the most
serious damage occurs near the top for bottom initi-
ation, while the most serious fractured zone occurs
near the bottom for top initiation; the middle initia-
tion takes advantage of the bottom and top initiation;
the cumulative effects of stress wave in the top and
bottom regions are all relatively good; the most frac-
tured zone appeared at the centre area as the charge is
initiated simultaneously at the top and bottom [28].
Numerical modelling in HSBM by Drover et al. [6]
indicated limited vibrations at the face and greater
rockmass damage occurred as the destressing charge
is collar primed.

6.4. Decoupling and coupling

A fully coupled explosive is the case where the
explosive charge fills the diameter of the blasthole.
Conversely, the decoupled explosive means that
gaps exist between the blasthole wall and the
explosive charge. The coupling ratio is often defined

as the charge diameter divided by the borehole
diameter. The coupling ratio controls the blast-
induced fracture patterns. Compared to the
coupling under the same conditions (explosive type,
charge weight, rock, etc.), the decoupling involves
pressure pulse with lower peak pressure and long
duration time. The explosive pressure transmitted
to rock masses is reduced due to the air gap be-
tween the borehole wall and the explosive [4,119].
Thus, the size of the crushed and fractured zone
decreases with the increase of the decoupling ratio
[127e129]. The decoupling technique can be used to
control blast-induced vibration and reduce the
disturbed zone around holes. For example, Zhu
et al. [28] adopted three types of coupling materials,
i.e. water, sands, and air, to study the coupling
medium on blast-induced damage. It has been
found that air-coupling caused the least extended
fractured zones, while water-coupling generated the
greatest fractured zone because the water has the
greatest ability to transmit stress waves. Therefore,
the decoupling technique has the potential to
enhance rock fragmentation. Experimental results
also indicated that the fluid-filled borehole gives
a better coupling with the borehole wall while pre-
venting crushing of the wall as found in fully loaded
holes [109,118,130].

6.5. Ideal and non-ideal detonation

Ideal or non-ideal may occur in an explosive
detonation. For the ideal detonation, all the energy
released within the reaction zone is used to drive the
detonation shock front and drive it forward. How-
ever, the non-ideal detonation merely uses partial
chemical energy to drive this detonation front, and
some of the explosive material may react after the
sonic plane [131,132]. An ideal detonation is of
limited practical use due to the wide application of
commercial explosives in mining engineering. Fac-
tors such as confining medium, coupling ratio, and
explosive charge may affect the degree of non-ideal
detonation [133]. Ideal detonation reaches its peak
pressure in a short time and decays rapidly, while
non-ideal detonation takes longer to reach its lower
peak pressure and decay [134]. According to the
characteristics, Saharan and Mitri [7] proposed
optimized pressure-time profiles for ideal and non-
ideal detonation to investigate the rock dynamical
response under blasting. It has been found that
ideal detonation leads to more crushing around the
borehole, which follows a large number of short
radial cracks. In contrast, the non-ideal detonation
results in a smaller crushing zone followed by a few
long radial cracks.
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6.6. Short delays

Short delay blasting techniques are considered
one of the potential methods for improving frac-
turing and fragmentation by overlapping waves and
enhancing the tensile tail of the stress waves
[104,135]. On the other hand, simultaneous initiation
of massive blastholes in mines would release a large
amount of energy that may potentially trigger
a seismic event [6,136]. Thus, a delayed blast of
those massive blastholes can overcome these prob-
lems. The nature of the delay blasting techniques is
stress wave interaction emitted from different
blastholes within the rock mass. If stress waves from
two neighboring blastholes are effectively super-
imposed on each other, the final compressive wave
is much longer than the single compressive wave,
resulting in more fractured rocks and a rise of the
final energy utilization [4]. The determination of the
optimum delay time helps to optimize blast design
in rock masses. Several numerical studies provided
evidence that the interaction between the stress
waves resulting from the detonation of neighbour-
ing blastholes plays a great role in rock damage and
fragmentation [104,137,138]. However, some studies
also revealed that no distinct differences or high
fragmentation improvements were caused by short
delay blasting [139].

6.7. Air deck

Air deck is a novel technique and involves the
replacement of some length of an explosive charge
in a blasthole with air in a fully charged blasthole
[140]. The air deck technique's motivation is the fact
that the rock around a fully charged blasthole is
broken too finely due to the absorption of much
explosive energy. Thus, the air deck technique is
developed to increase the explosion energy effi-
ciency [140]. Air columns between adjacent indi-
vidual charges provide space for detonation
products expansion and shock wave collision,
resulting in stress waves of lower amplitude and
greater length propagating into rock masses [141].
As a result, the degree and uniformity of fragmen-
tation, a decrease of average fragment size, and the
amount of lump are increased, accompanied by the
reduction of the specific consumption of explosives
[140,142].
The mechanism involving air-deck in blasting

practice has been further studied by numerical
simulations. Liu and Katsabanis [143] performed
numerical modelling on the air deck. It was found
that a significant amount of the potential energy
retained in the denotation was released and

imparted to the rock mass due to the repetitive
movement of the denotation products within the
borehole with the air deck. As a result, a secondary
loading wave was generated, increasing the amount
of energy directed for a more even breakage of the
entire rock material. The simulation results carried
out by Lu and Hustrulid [144] also indicated that at
least two stress waves are induced in the rock mass
as air-deck exists.

6.8. Discontinuities

Rock often contains various scales of discontinu-
ities, such as cracks, fissures, joints, cavities, bedding
planes, faults, and other natural weaknesses. Dis-
continuities are frequently encountered in the stress
wave travelling in rocks. When the stress wave en-
counters the joints, the transmitted portion may
create some radial cracks in the rock block, while the
reflected portion from the joint surface often causes
some circumferential cracks [47,105]. Joint proper-
ties, such as width, spacing, orientation, stiffness,
and infilling condition, has a great impact on the
transmission and reflection characteristics of stress
waves [9,105,145]. The joint sets potentially influence
the destressing mechanism and should be consid-
ered in destressing pattern design. Drover et al. [6]
suggested that collocating rows of destressing
charges should be set along visible pre-existing
discontinuities of suitable orientation to increase the
gases penetrating and the interaction between the
blast-induced fractures from adjacent destressing
charges.

6.9. In situ stress field

The in situ stress around the blasthole has a great
role in dynamic fracture extension and is essential
for blasting design and application. Isotropic stress
loading leads to an anisotropic fracture growth
pattern in rock blasting. The existence of higher
hydrostatic pressures significantly decreases the
length of radial cracks and the size of the fractured
zone, while the crushed zone near the blasthole has
an increasing trend [34,128,146]. However, an
anisotropic stress loading tends to guide cracks to
extend preferentially along the direction of the
maximum principal stress [93,94]. Besides, as shown
in Fig. 6, the anisotropy of the fractured zone be-
comes much greater as the difference between two
principal stresses increases [20,21,34]. A similar
phenomenon is often observed in laboratory ex-
periments [107]. The anisotropy of the failure
pattern in the anisotropic in situ stress field has
been reported in destress blasting applications [5].
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Therefore, the effect of the in situ stress field on
blasting should be considered in destress blasting
design, which may affect the effectiveness of
destress blasting.

6.10. Stemming

Proper stemming is beneficial for keeping more
detonation energy and a longer detonation wave
[147]. Consequently, the rock fracturing is more
severe around borehole with stemming than that
without stemming. Dally et al. [148] further
confirmed the conclusion by performing two blast-
ing experiments in two blastholes, one with stem-
ming and another without stemming. It has been
found that the maximum ratio of the crack radius at
crack arrest to borehole radius was 7 for the model
with the unstemmed charge, whereas with the
stemmed charge this ratio was at least 37. On the
other hand, the stemming column, as the least
resistance path, also provides a path for the explo-
sive energy ejection [5]. Therefore, the physical
properties of stemming materials matter. To
examine the effect of different stemming materials
on the stress wave-induced damage in rock,
a comparison of damage status for a cylindrical rock
with different stemming materials, including intact
rock, sand, and air, was made by Zhu et al. [28].
Simulation results showed that strong confinement
introduced by rock stemming can efficiently block
explosive products and produce more radial cracks
than the other cases. Thus, proper application of
stemming plugs may enhance explosive energy
utilization to a good extent.

6.11. Boundary condition

The free boundary denotes a free surface that
stress waves can partly reflect, while the transmit
boundary allows full transmission of stress waves, in
analogy to an infinitely large rock body. Therefore,

the boundary condition should be carefully selected
to obtain a realistic result in blasting modelling [31].
The effect of the boundary condition has been
numerically studied. When a compressive stress
wave propagates to a free surface, it will be reflected
as tensile stress waves. As a consequence, rock
fracturing close to the free surface will happen as
long as the amplitude of the tensile wave reaches
the dynamic tensile strength of the rock. These
cracks developed well between the borehole and the
free face are often named circumferential fractures
or spalling, parallel to the free face [28,149]. In
contrast, the transmit boundary does not cause any
circumferential cracks. The effect of free boundary
on spalling depends on several factors such as the
geometrical form and amplitude of the tensile wave,
the dynamic tensile strength of rocks, and the dis-
tance between the blasthole and the free surface
[4,25,83]. The free surface can be viewed as one of
the sources of tensile stresses in rock blasting, and
the rocks are fractured efficiently when a nearby
free surface exists.

6.12. Loading rate

The magnitude of the loading rate significantly
affects the intensity of damage and failure of the rock
masses [1]. Several numerical studies have focused
on the effect of the loading rate on the fracturing
during rock blasting [20,26,31]. Different waveforms
with varying rising times are generated and applied
on the borehole wall to study the effect of the loading
rate. The rise time of explosion pressure to its peak
varies strongly, depending on the blasthole diame-
terand confinement, rock strength, etc. [26,149]. It has
been found that a high loading rate generally wit-
nesses intensive crushing near the borehole and
many short radial fractures, while a lower loading
rate produces a relatively smaller crushed zone and
fewer and longer radial fractures (Fig. 7). For a high
strain rate, the crushed zone consumes too much

Fig. 6. Effect of stress field on radial crack propagation in rock [20].
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energy, while the rock in the relatively far-field is not
sufficiently fractured, resulting in low energy effi-
ciency [4]. Conversely, a lower loading rate always
results in higher energy efficiency.

7. Conclusions

Static and dynamic approaches are two typically
used approaches to modelling destress blasting of
rock masses. Destress blasting in the static method
(i.e., equivalent modelling approach) is achieved by
modifying the mechanical properties and the post-
blast stress state of the rock masses in the specified
destressed zone. On the other hand, the dynamic
approaches can model the blasting process and give
a more precise extent of fractured zones. For the
dynamic approaches, the contribution of shock
stress and denotative gas need to be considered, and
their effect has been studied separately or jointly to
reveal the blasting mechanism. Equation of state,
pressure decay functions, predefined functions, etc.,
have been implemented within software packages
to model the blasthole wall pressure. Lots of gas
flow models have been developed to handle the
interaction between the gas and fractures. More-
over, some innovative methods have been pre-
sented to solve the coupled effect of stress wave and
gas pressure in rock blasting modelling. Modelling
of rock masses can be classified into two categories:
direct and indirect method. For the direct method,
the microcracks can be directly modelled by the
breakage of individual structural units or bonds. For
the indirect method, a proper dynamic constitutive
model should be selected to imitate the rock dy-
namic response in blasting practice. Commonly
used dynamic constitutive models include JH2, JHC,
RHT, and their modifications.
The fracture mechanism of blasting in rock mass

has been widely studied, and similar fracture pat-
terns are obtained. The shock wave causes a crushed
zone near the boreholes and fractured zones with
many radial cracks outside the crushed zone. The

explosive gas would then penetrate the shock wave-
induced fractures and further extend radial cracks.
Shock waves are believed to have a major role in
generating cracks compared with explosive gas
penetration. According to numerous numerical val-
idations, the destress efficiency of the commonly
used blasting patterns is found to be overestimated,
especially under high stress. Some novel destressing
concept has been proposed, which provide a solution
for optimizing the destress blasting design under
high-stress conditions. The explosive in the rock
masses is a complex process, and the blasting effi-
ciency is dependent on numerous factors. Those
factors which may affect the efficiency of destress
blasting are briefly described. Understanding the
mechanism of these factors should help improve the
destress blasting design.
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