PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pyrolysis and gasification of digestate from agricultural biogas plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Piroliza i gazyfikacja pofermentu z biogazowni rolniczych
Języki publikacji
EN
Abstrakty
EN
Anaerobic digestion residue represents a nutrient rich resource which, if applied back on land, can reduce the use of mineral fertilizers and improve soil fertility. However, dewatering and further thermal processing of digestate may be recommended in certain situations. Limited applicability of digestate as fertilizer may appear, especially in winter, during the vegetation period or in areas where advanced eutrophication of arable land and water bodies is developing. The use of digestate may be also governed by different laws depending on whether it is treated as fertilizer, sewage sludge or waste. The aim of this paper is to present the effects of thermal treatment of solid fraction of digestate by drying followed by pyrolysis and gasification. Pyrolysis was carried out at the temperature of about 500°C. During this process the composition of flammable gases was checked and their calorific value was assessed. Then, a comparative analysis of energy parameters of the digestate and the carbonizate was performed. Gasification of digestate was carried out at the temperature of about 850°C with use of CO2 as the gasification agent. Gasification produced gas with higher calorific value than pyrolysis, but carbonizate from pyrolysis had good properties to be used as a solid fuel.
PL
Pozostałości z biogazowni rolniczych stanowią bogaty w substancje nawozowe surowiec, w przypadku którego, jego rolnicze wykorzystanie, może zmniejszyć stosowanie nawozów mineralnych i poprawić właściwości gleby. Jednakże poferment powinien być wcześniej odwodniony i przetworzony termicznie. Ograniczona stosowalność w środowisku przyrodniczym pofermentu może szczególnie wystąpić w okresie zimowym oraz na terenach zagrożonych eutrofizacją. Wykorzystanie pofermentu podlega także ograniczeniom prawnym w zależności od tego czy jest traktowany jako nawóz, osad lub odpad. Celem artykułu jest przedstawienie efektów zastosowania termicznego przetwarzania odwodnionego pofermentu w procesach pirolizy i zgazowania. Proces pirolizy pofermentu prowadzono w temperaturze 500°C. Monitorowano skład i kaloryczność gazu pirolitycznego. Wykonano porównawcze analizy kaloryczności odwodnionego pofermentu i uzyskanego w wyniku pirolizy karbonizatu. Gazyfikację prowadzono w temperaturze 850°C w atmosferze CO2. Wykazano, iż uzyskany w procesie gazyfikacji gaz syntezowy posiadał wyższą kaloryczność, jednak dodatkowy produkt procesu pirolizy karbonizat posiadał dobre właściwości do wykorzystania jako paliwo stałe.
Rocznik
Strony
70--75
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury, Poland Research Center for Renewable Energy
  • University of Warmia and Mazury, Poland Research Center for Renewable Energy
  • University of Environmental and Life Sciences Faculty of Life Sciences and Technology Institute of Agricultural Engineering
Bibliografia
  • [1] Amon, B., Kryvoruchko, V., Amon, T. & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment, Agriculture. Ecosystems, and Environment, 112, pp. 153-162.
  • [2] Badran, N.M. (2001). Residual effect of nutrient-enriched organic residues on growth and nutrient utilization by corn plants grown on a sandy soil, Annals of Agricultural Science, Moshtohor, 39, 1, pp. 717-736.
  • [3] Bauer, A., Mayr, H., Hopfner-Sixt, K.,& Amon, T. (2009). Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues, Journal Biotechnology, 142, pp. 56-63.
  • [4] Börjesson, P. & Berglund, M. (2006). Environmental systems analysis of biogas systems - Part I: fuel-cycle emissions, Biomass and Bioenergy, 30, pp. 469-485.
  • [5] Börjesson, P. & Berglund, M. (2007). Environmental systems analysis of biogas systems - Part II: the environmental impact of replacing various reference systems, Biomass and Bioenergy, 31, pp. 326-344.
  • [6] Chen, S.Q. & Chen, B. (2012). Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: an energy-based analysis, Renewable & Sustainable Energy Reviews, 16, 6, pp. 3948-3959.
  • [7] Commission of the European Communities (1991). Council Directive 91/676/EEC of 12th December 1991 concerning the protection of waters against pollution caused by nitrates of agricultural origin, Official Journal of the European Communities L375.
  • [8] Garg, R.N., Pathak, H., Das, D.K. & Tomar, R.K. (2005). Use of fl y ash and biogas slurry for improving wheat yield and physical properties of soil, Environmental Monitoring and Assessment, 107, 1/3, pp. 1-9.
  • [9] Kim, Y.H., Lee, S.M., Lee H.W. & Lee, J.W. (2012). Physical and chemical characteristics of products from the torrefaction of yellow poplar (Liriodendron tulipifera), Bioresource Technology, 116, pp. 120-125.
  • [10] Kogut, P., Piekarski, J., & Ignatowicz, K. (2014). Start-up of biogas plant with inoculating sludge application, Rocznik Ochrona Środowiska, 16, pp. 534-545.
  • [11] Prins, M.J., Ptasinski, K.J. & Janssen, F.J.J.G. (2006). More efficient biomass gasification via torrefaction, Energy, 31, 15, pp. 3458-3470.
  • [12] Prochnow, A., Heiermann, M., Plöchl, M., Linke, B., Idler, C., Amon, T. & Hobbs, P.J. (2009). Bioenergy from permanent grassland - A review: 1. Biogas, Bioresource Technology, 100, pp. 4931-4944.
  • [13] Pötsch, E.M., Pfundtner, E. & Much, P. (2004). Nutrient content and hygienic properties of fermentation residues from agricultural biogas plants. Land use systems in grassland dominated regions. Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 2004, pp. 1055-1057.
  • [14] Rehl, T. & Müller, J. (2011). Life cycle assessment of biogas digestate processing technologies, Resources, Conservation, and Recycling, 56, pp. 92-104.
  • [15] Rousset, P., Macedo, L., Commandré, J.M. & Moreira, A. (2012). Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, Journal of Analytical and Applied Pyrolysis, 96, pp. 86-91.
  • [16] Sandars, D.L., Audsley, E., Canete, C., Cumby, T.R., Scotford, I.M. & Williams, A.G. (2003). Environmental benefits of livestock manure management practices and technology by Life Cycle Assessment, Biosystems Engineering, 84, pp. 267-281.
  • [17] Turkiewicz, A., Brzeszcz, J., & Kapusta, P. (2013). Preliminary tests of biogas microbiological purity in order to asses a possibility of its input into a gas system, Rocznik Ochrona Środowiska, 15, pp. 515-523.
  • [18] Voca, N., Kricka, T., Cosic, T., Rupic, V., Jukic Z. & Kalambura, S. (2005). Digested residue as a fertilizer after the mesophilic process of anaerobic digestion, Plant, Soil, and Environment, 51, pp. 262-266.
  • [19] Wannapeera, J. & Worasuwannarak, N. (2012). Upgrading of woody biomass by torrefaction under pressure, Journal of Analytical, and Applied Pyrolysis, 96, pp. 173-180.
  • [20] Wiśniewski, D., Gołaszewski, J., Białowiec, A. & Gołaszewski, M. (2012). Torrefaction of turkey manure and energy value of the product. International Workshop on Biomass Torrefaction for Energy. Alby, 2012.
  • [21] Wiśniewski, D. & Gołaszewski, J. (2013). Thermal treatment of dewatered digestate for energy use. Mat. Conf. International Anaerobic Digestion Symposium at Biogas World 2013, Berlin, 2013.
  • [22] Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks, Energy Conversion, and Management, 45, 5, pp. 651-671.
  • [23] Zaid, M.S., Ghozoli, M.A. & Lamhy, M.A. (2005). Residual effect of some organic residues produced from biogas on growth and nutrients utilization by wheat plants, Annals of Agricultural Science, Moshtohor, 43, 2, pp. 955-972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3f85b40-7128-491a-ad07-2121a614c148
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.