Identyfikatory
Warianty tytułu
Printing techniques in production of photovoltaic cells
Języki publikacji
Abstrakty
The purpose of this study is to present potential alternatives for printing techniques in production of new branch of technology, prined electronics, and especially printed solar cells. Printing industry is facing a reduction of demand for printed content, which is increasingly being disributd in elecronic form. Therefore, there is potential capacitis in he prining industry that can be utilized in developing the printed electronics industry. Production of printed thin-film photovoltaic cells is an excellent alternative for the printing companies that are looking for alternative markets for their products. This article presents the implementation of such solutions on an industrial scale, presents the potential opportunities and threats associated whith the production of printed solar cells. Examples are broughtto present more closer the issue of printing solar cells along with demonstration that such energy conversion systems, though dierent from traditional printed products, can be printed on existing lines, using commercially available materials. Printing techniques can have a curcial impact on the development and popularization of the alternative energy sources in the form of thin-film cells, which will advance the availability of these solutions for a wider range of society.
Czasopismo
Rocznik
Tom
Strony
9--21
Opis fizyczny
Bibliogr. 37 poz., rys., wykr.
Twórcy
autor
- Politechnika Warszawska, Centrum Badań i Innowacji Pro-Akademia w Łodzi
Bibliografia
- 1. Tai, Yan-Long, Zhen-Guo Yang, and Zhi-Dong Li, A promising approach to conductive patterns with high efficiency for flexible electronics. Applied Surface Science 257.16 (2011), 7096-7100.
- 2. Nyholm L., Nyström G., Mihranyan A., Stromme, M., Toward Flexible Polymer and Paper-Based Energy Storage Devices. Advanced Materials, 23(33) (2011), 3751-3769.
- 3. Zschieschang U. et al., Flexible Low-Voltage Organic Transistors and Circuits Based on a High-Mobility Organic Semiconductor with Good Air Stability. Advanced Materials 22.9 (2010), 982-985.
- 4. Tobjörk D., Österbacka R., Paper electronics. Advanced Materials 23.17 (2011), 1935-1961.
- 5. Burnside S. et al., Deposition and characterization of screen-printed porous multi-layer thick structures from semiconducting and conducting nanomaterials for use in photovoltaic devices. Journal of Materials Science: Materials in Electronics 11.4 (2000), 355-362.
- 6. Ito S., Chen P., Comte P., Nazeeruddin M.K., Liska P., Péchy P., Grätzel M., Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Progress in photovoltaics: research and applications, 15(7) (2007), 603-612.
- 7. Teng K.F., Vest R.W. Application of ink jet technology on photovoltaic metallization. Electron Device Letters, IEEE, 9(11) (1988), 519-593.
- 8. Aernouts T., Aleksandrov T., Girotto C., Geneo J., Poortmans J., Polymer based organic solar cells using ink-jet printed active layers. Applied Physics Letters, 92 (2008), 033306.
- 9. Krebs F.C., Tromholt T., Jørgensen M., Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2.6 (2010), 873-886.
- 10. Galagan T., de Vries I.G., Langen A.P., Andriessen R., Verhees W.J., Veenstra S.C., Kroon J.M., Technology development for roll-to-roll production of organic photovoltaics. Chemical Engineering and Processing: Process Intensification, 50(5) (2011), 454-461.
- 11. Zweibel K., Thin film PV manufacturing: Materials cost and their optimization. Solar energy materials and solar cells 63.4 (2000), 375-386.
- 12. Winther-Jensen B., Krebsand F.C., High-conductivity large-area semi-transparent electrodes for polymer photovoltaics by silk screen printing and vapour-phase deposition. Solar Energy Materials and Solar Cells 90.2 (2006), 123-132.
- 13. Aernouts T., Vanlaeke P., Geens W., Poortmans J., Heremans P., Borghs S., Leenders L., Printable anodes for flexible organic solar cell modules. Thin Solid Films, 451 (2004), 22-25.
- 14. Wang F., Chen Z., Xiao L., Qu B., Gong Q., Papery solar cells based on dielectric/metal hybrid transparent cathode. Solar Energy Materials and Solar Cells, 94(7) (2010), 1270-1274.
- 15. Lampercht B., Thünauer R., Ostermann M., Jakopic G., Organic photodiodes on newspaper. Physica Status Solidi (a), 202(5) (2005): R50-R52.
- 16. Moore A.R., Optimum shape of the bus bar on solar cells of arbitrary shape. RCA Review, vol. 38 (1977), 486-499.
- 17. Teng K.F., Vest R.W., Metallization of solar cells with ink jet printing and silver metalloorganic inks. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 11(3) (1988), 291-297.
- 18. Ikegami S., CdS/CdTe solar cells by screen-printing-sintering technique: Fabrication, photovoltaic properties and applications. Solar Cells 23.1 (1988), 89-105.
- 19. Brenner P., Printing photovoltaics. Industrial + Specialty Printing, 1(01) (2010), 26-33. (http://www.industrial-printing.net)
- 20. National Center for Photovoltaics NREL – Cell Efficiency Records, (http://www.nrel.gov/ncpv)
- 21. Applied Materials, The world’s most efficient solar cells. Retrieved from (http://www.appliedmaterials.com/technologies/solar/crystalline-silicon)
- 22. King R.R., Sherif R.A., Law D.C., Yen J.T., Haddad M., Fetzer C.M., Karam N.H. New horizons in III-V multijunction terrestrial concentrator cell research. In 21st European PV Solar Energy Conference (2006, September), Dresden.
- 23. http://www.semprius.com/
- 24. Zoomer W., Contemporary thin-film solar cells. Industrial + Specialty Printing, 1(03) (2010), 18-21.
- 25. Kaelin M., Rudmann D., Tiwari A.N., Low cost processing of CIGS thin film solar cells. Solar Energy 77.6 (2004), 749-756.
- 26. Zweibel K., Thin films: past, present, future. No. NREL/TP-413-7486. National Renewable Energy Lab., Golden, CO (United States), (1995).
- 27. O’Regan B., Grätzel M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (6346) (1991), 737-740.
- 28. Li Gang, Rui Zhu, Yang Yang, Polymer solar cells. Nature Photonics 6.3 (2012), 153-161.
- 29. Thompson B.C., Fréchet J., Polymer-fullerene composite solar cells. Angewandte Chemie International Edition 47.1 (2008), 58-77.
- 30. Vanek F.M., Albright L.D., Energy systems engineering: Evaluation & Implementation. New York (2008), McGraw Hill.
- 31. Sibiński M., Jakubowska M., Znajdek K., Słoma M., Guzowski B., Carbon nanotube transparent conductive layers for solar cells applications. Optica Applicata, 41(2) (2011), 375-381.
- 32. Sibiński M., Znajdek K., Walczak S., Słoma M., Górski M., Cenian A., Comparison of ZnO: Al, ITO and carbon nanotube transparent conductive layers in flexible solar cells applications. Materials Science and Engineering: B, 177(15) (2012), 1292-1298.
- 33. Jakubowska M., Słoma M., Młożniak A., Printed transparent electrodes containing carbon nanotubes for elastic circuits applications with enhanced electrical durability under severe conditions. Materials Science and Engineering: B, 176.4 (2011), 358-362.
- 34. Futera K., Sitek J., Słoma M., Jakubowska M., Organiczna Elektronika - ekonomiczna alternatywa dla elektroniki. Elektronika: konstrukcje, technologie, zastosowania, 50(12) (2009), 95-99.
- 35. Jakubowska M., Słoma M., Janczak D., Młożniak A., Wróblewski G., Printed transparent electrodes with graphene nanoplatelets. Elektronika: konstrukcje, technologie, zastosowania, 53(6) (2012), 97-99.
- 36. Fraunhofer-Gesellschaft, Screen-printed solar cells In many colors and design, even used in windows. Science Daily, 2008. http://www.csiencedaily.com/releases/2008/01/080130194130.htm
- 37. http://www.nanosolar.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3f74b86-56e8-4d11-a5c2-4891d1d11b85