PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Techno-Economic Assessment of Concentrating Solar Power and Wind Hybridization in Jordan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The variable renewable wind and solar resources have experienced a significant growth on its rate of deployment as a clean and competitive alternative for conventional power sources in Jordan. However, the variability of these sources have brought many technical challenges to grids. This paper presents a hybrid system that provides a firma capacity and improves dispatchability with an interesting financial perspective. This hybrid system includes a wind farm and a concentrated solar power plant with thermal energy storage. The performance analysis was conducted in terms of final yield and capacity factor, while the economic analysis investigated the levelized cost of electricity LCOE. The hybrid plant was simulated and optimized using TRNSYS 17 energy simulation software, minimizing the LCOE and considering a capacity factor higher than 65% as a constraint. Solar multiple and storage size were considered as decision variables. A strong complementarity between wind and direct normal solar radiation was observed in the selected location in Jordan, which emphasizes the attractiveness of the selected hybrid system. The optimal configuration of the CSP-wind hybrid system was obtained with a solar field of a 2.6 solar multiple and a 5 hours energy storage. The achieved capacity factor was 94%, and the LCOE is lower than those resulted for standalone CSP plants.
Rocznik
Strony
16--23
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
autor
  • Mechanical Engineering Department, The University of Jordan, Jordan
  • Mechanical Engineering Department, The University of Jordan, Jordan
Bibliografia
  • 1. Chaanaoui M., Vaudreuil S., Bounahmidi T. 2016. Benchmark of Concentrating Solar Power Plants: Historical, Current and Future Technical and Economic Development. Procedia Computer Science, 83(Seit), 782–789. https://doi.org/10.1016/j. procs.2016.04.167.
  • 2. Chen H.H., Kang H.Y., Lee A.H.I. 2010. Strategic selection of suitable projects for hybrid solar-wind power generation systems. Renewable and Sustainable Energy Reviews, 14(1), 413–421. https://doi. org/10.1016/j.rser.2009.08.004
  • 3. Chen R., Sun H., Guo Q., Li Z., Deng T., Wu W., Zhang B. 2015. Reducing Generation Uncertainty by Integrating CSP with Wind Power: An Adaptive Robust Optimization-Based Analysis. IEEE Transactions on Sustainable Energy, 6(2), 583–594. https://doi.org/10.1109/TSTE.2015.2396971
  • 4. Dale M. 2013. A Comparative Analysis of Energy Costs of Photovoltaic, Solar Thermal, and Wind Electricity Generation Technologies. Applied Sciences, 3(2), 325–337. https://doi.org/10.3390/app3020325
  • 5. González A., Riba J.R., Rius A., Puig R. 2015. Optimal sizing of a hybrid grid-connected photovoltaic and wind power system. Applied Energy, 154, 752– 762. https://doi.org/10.1016/j.apenergy.2015.04.105
  • 6. Kost C., Pfluger B., Eichhammer W., Ragwitz M. 2011. Fruitful symbiosis: Why an export bundled with wind energy is the most feasible option for North African concentrated solar power. Energy Policy, 39(11), 7136–7145. https://doi.org/10.1016/j. enpol.2011.08.032
  • 7. Li T., Liu Y., Wang D., Shang K., Liu J. 2015. Optimization analysis on storage tank volume in solar heating system. Procedia Engineering, 121, 1356– 1364. https://doi.org/10.1016/j.proeng.2015.09.019
  • 8. Liqreina A., Qoaider L. 2014. Dry cooling of concentrating solar power ( CSP ) plants , an economic competitive option for the desert regions of the MENA region. Solar Energy, 103, 417–424. https:// doi.org/10.1016/j.solener.2014.02.039
  • 9. MEMR. (2015). Annual Report. Retrieved from http://www.memr.gov.jo/Pages/viewpage. aspx?pageID=190
  • 10. meteonorm. (2016). http://www.meteonorm.com.
  • 11. NEPCO. 2015. Annual Report 2015.
  • 12. Pousinho H.M.I., Esteves J., Mendes V.M.F., Collares-Pereira M., Pereira Cabrita C. 2016. Bilevel approach to wind-CSP day-ahead scheduling with spinning reserve under controllable degree of trust. Renewable Energy, 85, 917–927. https://doi. org/10.1016/j.renene.2015.07.022
  • 13. Qoaider L., Liqreina A. 2015. Optimization of dry cooled parabolic trough ( CSP ) plants for the desert regions of the Middle East and North Africa (MENA). Solar Energy, 122, 976–985. https://doi. org/10.1016/j.solener.2015.10.021
  • 14. Serrano-lópez R., Fradera J., Cuesta-López S. 2013. Molten salts database for energy applications.
  • 15. Servert J., López D., Cerrajero E., Rocha A.R., Pereira D., González L. 2016. Tailoring HYSOL: Solar Energy Contribution to Reach Full Dispatchability and Firmness in Target Markets. Procedia Computer Science, 83, 1134–1141. https://doi. org/10.1016/j.procs.2016.04.234
  • 16. Sh. Al-raqqad. 2016. Computer Modeling of a Hybrid Solar Power Tower with Thermal Storage and Integrated Photovoltaic as a Base-Load Power Source for Aqaba Special Economic Zone, Master thesis, University of Jordan
  • 17. Sioshansi R., Denholm P. 2013. Benefits of Colocating Concentrating Solar Power and Wind. Sustainable Energy, IEEE Transactions on, 4(4), 877–885. https://doi.org/10.1109/TSTE.2013.2253619
  • 18. Solar Millennium AG 2008. The parabolic trough power plants Andasol 1 to 3. The largest solar power plants in the world – technology premiere in Europe. Report oeko1_159_presse_engl_0309_02.
  • 19. Vick B.D., Moss T.A. 2013. Adding concentrated solar power plants to wind farms to achieve a good utility electrical load match. Solar Energy, 92, 298–312. https://doi.org/10.1016/j.solener.2013.03.007.
  • 20. Yunna W., Geng S. 2014. Multi-criteria decision making on selection of solar-wind hybrid power station location: A case of China. Energy Conversion and Management, 81, 527–533. https://doi. org/10.1016/j.enconman.2014.02.056
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3f710c7-2372-4af6-8072-29666a7b9c7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.