PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of damage causes of monumental objects located in mining areas – case study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an example illustrating the problems of assessing the causes of damage that occurred to building structures located in mining and post-mining area. It is frequently necessary to determine whether probable damages came from other, non-mining causes or were caused by underground mining. This issue is particularly significant when it comes to monumental, historical objects because the cost of repairs is typically very high. The purpose of this work is to demonstrate, using the magnificent church as an example, that damage to building objects situated in mining areas does not necessarily result from mining activities. As a result, every such situation should be thoroughly evaluated to determine whether such a relationship exists. For the assessment of such a conclusion, multidirectional studies in the framework of this work were carried out: hydrogeological, mining and technical factors that cause the damage to the church building in question were analysed.
Rocznik
Strony
187--205
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab.
Twórcy
  • Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  • Silesian University of Technology, 2A Akademicka Str., 44-100 Gliwice, Poland
  • Strata Mechanics Research Institute, Polish Academy of Science, 25 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] D. Banks, A. Frolik, G. Gzyl, M. Rogoż, Modeling and monitoring of mine water rebound in an abandoned coal mine complex: Siersza Mine, Upper Silesian Coal Basin, Poland. Hydrogeology Journal 18 (2), 519-534 (2010). DOI: https://doi.org/10.1007/s10040-009-0534-z.
  • [2] J. Białek, Algorithms and computer programs for forecasting of the deformations of mining area. Publ. House Silesian Univ. Technol. (in Polish) (2003).
  • [3] J. Blachowski, S. Cacoń, W. Milczarek, Analysis of post-mining ground deformations caused by underground coal extraction in complicated geological conditions. Acta Geodyn. Geomater. 6 (3), 351-357 (2009).
  • [4] H. Buczek, P. Strzałkowski, Wpływ warunków geologicznych i gruntowych na uszkodzenia obiektu na terenie górniczym. Zeszyty Naukowe Politechniki Śląskiej, Górnictwo 270, 33-45 (in Polish) (2005).
  • [5] H. Buczek, P. Strzałkowski, Wpływ wielokryterialnej eksploatacji górniczej na obiekty o niskiej odporności na przykładzie budynku kościoła w M. VII Szkoła Geomechaniki: Międzynarodowa konferencja, Gliwice-Ustroń, 161-173 (2005).
  • [6] I. Bryt-Nitarska, Reasons for enhanced technical wear and tear of buildings on areas affected by underground mining operations (Przyczyny zużycia technicznego budynków na terenach górniczych). The Bulletin of The Mineral and Energy Economy Research Institute of the Polish Academy of Sciences 101, 61-70 (in Polish) (2017).
  • [7] I. Bryt-Nitarska, Effects of strong mining tremors, and assessment of the building’s resistance to the dynamic impacts. E3S Web of Conf. 36 (2018). DOI: https://doi.org/10.1051/e3sconf/20183601003.
  • [8] I. Bryt-Nitarska, Studies of masonry structure technical wear in mining areas. Arch. Min. Sci. 64 (2), 239-249 (2019). DOI: https://doi.org/10.24425/ams.2019.128680.
  • [9] E. Can, Ş. Kuşcu, M.E. Kartal, Effects of mining subsidence on masonry buildings in Zonguldak hard coal region in Turkey. Environ. Earth Sci. 66, 2503-2518 (2012). DOI: https://doi.org/10.1007/s12665-011-1473-2.
  • [10] M. Chudek, Geomechanics with the basics of mining environment and land surface protection (Geomechanika z podstawami ochrony środowiska górniczego i powierzchni terenu). Publ. House Silesian Univ. Technol. (in Polish) (2002).
  • [11] M. Chudek, Rock mass mechanics with the basics of environmental protection management in mining and postmining areas (Mechanika górotworu z podstawami zarządzania ochroną środowiska w obszarach górniczych i pogórniczych). Publ. House Silesian Univ. Technol. (in Polish) (2010).
  • [12] C. Didier, Postmining management in France: situation and perspectives. Risk Analysis, Wiley 29 (10), 1347-1354 (2009). DOI: https://doi.org/10.1111/j.1539-6924.2009.01258.x.
  • [13] Ł. Drobiec, Repair and renovation of the historic church in Ruda Śląska after many failures caused by mining exploitation. Civil And Environmental Engineering Reports 31 (4), 87-111 (2021). DOI: https://doi.org/10.2478/ceer-2021-0051.
  • [14] Ł. Drobiec, M. Kawulok, L. Słowik, Skuteczność wzmocnienia budynku kościoła w warunkach wpływów podziemnej eksploatacji górniczej. Aktualne problemy budownictwa na terenach górniczych i pogórniczych. IV Konferencja 472, M. Kawulok (Eds.), 149-160 (in Polish) (2021).
  • [15] M.D. Fidelibus, F. Gutiérrez, G. Spilotro, Human – induced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy), Eng. Geol. 118 (1-2), 1-19 (2011). DOI: https://doi.org/10.1016/j.enggeo.2010.12.003.
  • [16] L. Florkowska, Example building damage caused by mining exploitation in disturbed rock mass. Studia Geotechnica et Mechanica 35 (2), (2013). DOI: https://doi.org/10.2478/sgem-2013-0021.
  • [17] L. Florkowska, I. Bryt-Nitarska, A. Maj, Mining damage to buildings. Outline of the issues (Szkody górnicze w budynkach. Zarys problematyki). Monograph. Polish Academy of Sciences, Strata Mechanics Res. Inst., Cracow (in Polish) (2016).
  • [18] K. Gromysz, Analysis of removal method of a 19 th church‘s deflection. MATEC Web of Conferences 284 (2019). DOI: https://doi.org/10.1051/matecconf /2019284.
  • [19] D. Ignacy, Relative elevations of the surface of artificially drained mine subsidence areas as significant aspects in formulating environmental policy. J. Hydrol. 575 (2019). DOI: https://doi.org/10.1016/j.jhydrol.2019.05.091.
  • [20] Z. Kaláb, R. Ścigała, P. Strzałkowski, Influence of vibration and ground deformation on historic structures: case study. Acta Montan. Slovaca 27 (3), 783-799 (2022). DOI: https://doi.org/10.46544/ams.v27i3.17.
  • [21] S. Karácsonyi, Z. Bernáth, Guiding principles for the preparation of hydrological maps for building. Bulletin of the International Association of Engineering Geology 19, 237-241 (1979). DOI: https://doi.org/10.1007/BF02600481.
  • [22] M. Kawulok, Evaluating the suitability of mining areas for building. Guidance (Ocena przydatności terenów górniczych do zabudowy. Poradnik). Instytut Techniki Budowlanej, Warszawa (in Polish) (2013).
  • [23] A. Kidybiński, Fundamentals of mine geotechnics (Podstawy geotechniki kopalnianej). „Śląsk“ Publ. House, Katowice (in Polish) (1982).
  • [24] S. Knothe, Forecasting the influence of mining exploitation (Prognozowanie wpływów eksploatacji górniczej). „Śląsk“ Publ. House, Katowice (in Polish) (1984).
  • [25] H. Kratzsch, Mining Subsidence Engineering. Springer-Verlag. Berlin, Heidelberg, New York (1983).
  • [26] A. Kowalski, P. Gruchlik, P. Polanin, K. Kiełbiowski, T. Rutkowski, Mining extraction in Ruda Śląska – Wirek, deformations and protection of the church building (Eksploatacja górnicza w Rudzie Śląskiej – Wirku, deformacje i ochrona kościoła). Przegląd Górniczy 4-6, 16-35 (in Polish) (2021).
  • [27] A. Ledwoń, Construction in mining areas (Budownictwo na terenach górniczych). „Arkady” Publ. House (in ­Polish) (1983).
  • [28] L. Yang, S.S. Peng, Z. Jinwang, Impact of longwall mining on groundwater above the longwall panel in shallow coal seams. Journal of Rock Mechanics and Geotechnical Engineering 7 (3), 298-305 (2015). DOI: https://doi.org/10.1016/j.jrmge.2015.03.007.
  • [29] X. Liu, G. Guo, H. Li, Study on Damage of Shallow Foundation Building caused by Surface Curvature Deforma tion in Coal Mining Area. KSCE J. Civ. Eng. 23, 4601-4610 (2019). DOI: https://doi.org/10.1007/s12205-019-1525-9.
  • [30] M. Marschalko, I. Yilmaz, D. Lamich, et al., Unique documentation, analysis of origin and development of an undrained depression in a subsidence basin caused by underground coal mining. Environ. Earth Sci. 72, 11-20 (2014). DOI: https://doi.org/10.1007/s12665-013-2930-x.
  • [31] M. Marschalko, I. Yilmaz, D. Lamich, M. Bednárik, Underground mining hazard map including building site categories in an area affected by underground mining activities. Environ. Earth Sci. 72, 2655-2666 (2014). DOI: https://doi.org/10.1007/s12665-014-3172-2.
  • [32] S. Qu, G. Wang, Z. Shi, P. Zhou, Q. Xu, Z. Zhu,Temporal changes of hydraulic properties of overburden aquifer induced by longwall mining in Ningtiaota coalfield, northwest China. Journal of Hydrology 582 (2020). DOI: https://doi.org/10.1016/j.jhydrol.2019.124525.
  • [33] M. Rogoż, Mine hydrogeology with the basics of general hydrogeology (Hydrogeologia kopalniana z podstawami hydrogeologii ogólnej). Publ. House of Central Mining Institute, Katowice (in Polish) (2004).
  • [34] P. Strzałkowski, Outline of the protection of mining areas (Zarys ochrony terenów górniczych). Publ. House Silesian Univ. Technol. (in Polish) (2010).
  • [35] P. Strzałkowski, Some remarks on impact of mining based on an example of building deformation and damage caused by mining in conditions of Upper Silesian Coal Basin. Pure Appl. Geophys. 176, 2595-2605 (2019). DOI: https://doi.org/10.1007/s00024-019-02127-1.
  • [36] P. Strzałkowski, The influence of selected mining and natural factors on the sinkhole creation hazard based on the case study. Environ. Earth Sci. 80 (3), 1-12. (2021). DOI: https://doi.org/10.1007/s12665-021-09403-1.
  • [37] R. Ścigała, Computer aided forecasting of rock mass deformation and surface deformation caused by underground mining (Komputerowe wspomaganie prognozowania deformacji górotworu i powierzchni wywołanych podziemną eksploatacją górniczą). Publ. House Silesian Univ. Technol. (in Polish) (2008).
  • [38] M. Vandana, S.E. John, K. Maya, D. Padmalal, Environmental impact of quarrying of building stones and laterite blocks: a comparative study of two river basins in Southern Western Ghats, India. Environ. Earth Sci. 79, 366 (2020). DOI: https://doi.org/10.1007/s12665-020-09104-1.
  • [39] W. Hongwei, J. Yaodong, X. Sheng, M. Lingtao, L. Zhinan, D. Daixin, Z. Dengqiang, Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone. Journal of Rock Mechanics and Geotechnical Engineering 8 (5), 660-671 (2016). DOI: https://doi.org/10.1016/j.jrmge.2016.03.005.
  • [40] B.N. Whittaker, D.J. Reddish, Subsidence occurrence, prediction and control. Developments in geotechnical engineering. Elsevier, Amsterdam, Oxford, New York, Tokyo (1989).
  • [41] A. Wieczysty, Engineering hydrogeology (Hydrogeologia inżynierska). PWN Publ. House, Warszawa (in Polish) (1982).
  • [42] Z. Wiłun, Outline of geotechnics (Zarys geotechniki). Transport and Communication Publishers Publ. House, Warszawa. (in Polish) (2020).
  • [43] P. Wrona, Z. Różański, G. Pach, Closed coal mine shaft as a source of carbon dioxide emissions. Environ. Earth Sci. 75, 1139 (2016). DOI: https://doi.org/10.1007/s12665-016-5977-7.
  • [44] Yilmaz, M. Marschalko, A leaning historical monument formed by underground mining effect: An example from Czech Republic. Engineering Geology 133-134, 43-48 (2012). DOI: https://doi.org/10.1016/ j.enggeo.2012.02.011.
  • [45] L. Zhu, H. Gong, X. Li, R. Wang, B. Chen, Z. Dai, P. Teatini, Land subsidence due to groundwater withdrawal in the northern Beijing plain, China, Engineering Geology 193, 243-255 (2015). DOI: https://doi.org/10.1016/ j.enggeo.2015.04.020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3f34442-da83-460d-a205-9703e0d67c1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.