PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal analysis of longitudinal a porous fin with temperature-dependent internal heat generation using the variation of parameters method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the thermal performance of longitudinal a porous fin with temperature-dependent internal heat generation. The Darcy model is utilized to obtain the differential form of the governing equation that solves the nonlinear temperature distribution equation using the method of variation of parameters. Although this method is applied to solve both linear and nonlinear differential equations, there exist rare applications of this method to solve nonlinear heat transfer problems. In the present study, we applied the method to estimate the thermal analysis of the porous fin exposed to convection. The heat generation is assumed as a function of temperature. The effects of the convection parameter Nc, internal heat generation ɛ, porosity Sh, and generation number G parameter on the dimensionless temperature distribution are discussed in detail. The accuracy of the variation of parameters method is verified through comparison with homotopy perturbation method and the Matlab bvp4c solver (NUM). The results have disclosed that the variation of parameters method can be used as a very effective and practical approach for further studies of the porous medium.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Technical Scientific Vocational School, Bayburt University Bayburt, Turkey
  • Faculty of Engineering, Ataturk University Erzurum, Turkey
Bibliografia
  • [1] Kraus, A.D., Aziz, A., & Welty, J. (2001). Extended Surface Heat Transfer. New York: John Wiley & Sons Inc.
  • [2] Arslanturk, C., (2010). Analysis of thermal performance of annular fins with variable thermal conductivity by homotopy analysis method. Isi Bilimi ve Teknigi Dergisi. Journal of Thermal Science & Technology, 30(2), 1-7.
  • [3] Arslanturk C., (2010). Optimization of straight fins with a step change in thickness and variable thermal conductivity by homotopy perturbation method. Isi Bilimi ve Teknigi Dergisi. Journal of Thermal Science & Technology, 30(2), 9-19.
  • [4] Kiwan, S., & Al-Nimr, M.A. (2001). Using porous fins for heat transfer enhancement. Journal of Heat Transfer, 123(4), 790-795.
  • [5] Kiwan, S. (2007). Effect of radiative losses on the heat transfer from porous fins. International Journal of Thermal Sciences, 46(10), 1046-1055.
  • [6] Gorla, R.S.R., & Bakier, A.Y. (2011). Thermal analysis of natural convection and radiation in porous fins. International Communications in Heat and Mass Transfer, 38(5), 638-645.
  • [7] Kundu, B., Bhanja, D., & Lee, K.S. (2012). A model on the basis of analytics for computing maximum heat transfer in porous fins. International Journal of Heat and Mass Transfer, 55(25-26), 7611-7622.
  • [8] Hatami, M., & Ganji, D.D. (2013). Thermal performance of circular convective-radiative porous fins with different section shapes and materials. Energy Conversion and Management, 76, 185-193.
  • [9] Cuce, E., & Cuce, P.M. (2015). A successful application of homotopy perturbation method for efficiency and effectiveness assessment of longitudinal porous fins. Energy Conversion and Management, 93(2015), 92-99.
  • [10] Kundu, B., & Das, P.K. (2005). Optimum profile of thin fins with volumetric heat generation: a unified approach. Journal of Heat Transfer, 127, 945-948.
  • [11] Moradi, A., Hayat, T., & Alsaedi, A. (2014). Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management, 77, 70-77.
  • [12] Kundu, B., & Lee, K.S. (2016). A proper analytical analysis of annular step porous fins for determining maximum heat transfer. Energy Conversion and Management, 110, 469-480.
  • [13] Bhanja, D., & Kundu, B. (2011). Thermal analysis of a constructal T-shaped porous fin with radiation effects. International Journal of Refrigeration, 34(6), 1483-1496.
  • [14] Kayhani, M.H., Norouzi, M., & Amiri Delouei, A. (2012). A general analytical solution for heat conduction in cylindrical multilayer composite laminates. International Journal of Thermal Sciences, 52, 73-82.
  • [15] Delouei, A., Emamian, A., Karimnejad, S., Sajjadi, H., & Tarokh, A. (2019). On 2D asymmetric heat conduction in functionally graded cylindrical segments: A general exact solution. International Journal of Heat and Mass Transfer, 143, 118515.
  • [16] Delouei, A., Emamian, A., Karimnejad, S., & Sajjadi, H. (2019). A closed-form solution for axisymmetric conduction in a finite functionally graded cylinder. International Communications in Heat and Mass Transfer, 108, 104280.
  • [17] Delouei, A., Emamian, A., Karimnejad, S., Sajjadi, H., & Jing, D. (2020). Asymmetric conduction in an infinite functionally graded cylinder: Two-dimensional exact analytical solution under general boundary conditions. Journal of Heat Transfer, 142(4), 044505.
  • [18] Delouei, A., Kayhani, M.H., & Norouzi, M. (2012). Exact analytical solution of unsteady
  • axi-symmetric conductive heat transfer in cylindrical orthotropic composite laminates. International Journal of Heat and Mass Transfer, 55(15-16), 4427-4436.
  • [19] Moore, T.J. (2014). Application of Variation of Parameters to Solve Nonlinear Multimode Heat Transfer Problems. Ph. D Thesis, Brigham Young University.
  • [20] Mohyud-Din, S.T., Noor, M.A., & Waheed, A. (2010). Variation of parameters method for initial and boundary value problems. World Applied Sciences Journal, 11(5), 622-639.
  • [21] Rahmatullah., & Mohyud-Din, S.T. (2013). Variation of parameters method for nonlinear diffusion equations. International Journal of Modern Applied Physics, 3(1), 48-56.
  • [22] Moore, T.J., & Jones, M.R. (2014). Analysis of the conduction-radiation problem in absorbing, emitting, non-gray planar media using an exact method. International Journal of Heat and Mass Transfer, 73, 804-809.
  • [23] Arslantürk, C., (2016). Isıl parametreleri sıcaklıkla değişen iğne kanatların, parametrelerin değişimi yöntemi ile performans analizi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 22(4), 246-252.
  • [24] Arslantürk, C., (2018). Variation of parameters method for optimizing annular fins with variable thermal properties. Pamukkale University Journal of Engineering Sciences, 24(1), 1-7.
  • [25] Arslantürk, C., (2018). Optimization of space radiators accounting for variable thermal conductivity and base-to-fin radiation interaction. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(1), 121-130.
  • [26] Güngör, O., & Arslantürk, C. (2019). Variation of parameters method for a three-dimensional problem of condensation film on an inclined rotating disk. Journal of Applied Mathematics and Computational Mechanics, 18(1), 15-28.
  • [27] Hoshyar, H.A., Rahimipetroudi, I., Ganji, D.D., & Majidian, A.R. (2015). Thermal performance of porous fins with temperature-dependent heat generation via the homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 14(4), 53-65.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3edf6c2-7c1f-4e77-907f-d19d5dd47ca4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.