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MODELLING OF VERTICAL SHAFT OF MIXED-FLOW PUMP

The aim of the work was modelling of shaft and calculation of natural vibration
frequencies and critical rotations of a large-size, vertical mixed flow pump of total
length l=4866 mm. Equations of motion were determined analytically, and then
calculation results were verified by numerical modelling. The difficulty of the problem
consisted in the shaft bearing, in which four hydrodynamic bearings of unknown
parameters were applied. A four-mass beam supported on flexible supports of rigidity
k and damping c was assumed as the discrete model of the shaft. Equations of motion
for the system were derived with the method of forces. In order to verify correctness
of the derived equations, one considered three models of the beam with different
support configuration: the beam supported on rigid supports, the beam supported
on elastic supports, and the beam supported on flexible supports of rigidity k and
damping c. Calculation results are presented in tables and graphs.

1. Introduction

One of the most important tasks associated with dynamics of fluid-flow
machines is determination of frequencies of free vibrations and critical ro-
tations of the shaft. In the presented paper, we analyse the shaft of a large-
size, 6-metre long mixed-flow pump. The dynamic analysis was a difficult
task due to the lack of data on rigidity and damping of shaft supports. The
available data were constructional drawings and measurements of vibrations
of the body taken during machine operation and during its coasting. The
analysis of shaft vibrations was conducted with an analytical method, which
offered certain advantages over commonly-used numerical methods. Because
of complexity of the object [1], correctness of the analysis was verified with
a numerical method.
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The starting point for calculations was a structural model constructed
according to the requirements of similarity to the real object, taking into
account the tasks to be solved, and ensuring the possibility and easiness of
solving the equations [2, 3]. The equations of motion were defined in the
next step. In this work, because of model complexity, we applied the method
of forces, commonly used in dynamics of constructions.
The basic characteristic data of the unit are as follows:

– efficiency: 5000 m3·h−1,
– lifting height: 60 mH2O,
– engine power: 1250 kW,
– rotating speed: 740 rpm,
– total height of unit: 9,8 m.

Overall dimensions of the unit influence the manner the unit is seated
on the foundation. The basic assemblies of the unit are: the electric engine,
founded on the upper foundation (Fig. 1) and the main pump supported by
the lower foundation. The spatial model of the whole pump is presented in
Figure 2.

Fig. 1. Electric engine of the pump

2. Measurement results, determine rigidity and damping of supports

Measurements of pump vibrations were carried out at eight measuring
points, located at different heights on the pump (Fig. 3). The vibrations were
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Fig. 2. View of vertical mixed-flow pump

measured in three directions. Measurement results of vibrations speed are
presented in Table 1.

Table 1.
Vibration measurement results

Direction and value of vibration component

x y z
Speed
[mm/s]

Acceleration
[m/s2]

Speed
[mm/s]

Acceleration
[m/s2]

Speed
[mm/s]

Acceleration
[m/s2]

1 4.0108 1.2332 5.5884 1.8884 – –

2 5.0412 1.3568 5.158 1.6092 – –

3 1.394 1.2896 1.5112 1.7412 – –

4 1.276 0.61 1.1312 0.7532 – –

5 – – – – 2.2176 0.7012

6 0.6392 0.7288 1.3912 0.6996 – –

7 1.1968 0.4456 0.7972 0.7984 – –

8 – – – – 0.4552 0.5628

Measurement results showed that, at points 1 and 2, the speeds of vibra-
tions admissible for this type of machinery were exceeded and, according to
the Polish Norm, the machine was only conditionally admitted for operation.
It was necessary to explain the reason for such a high level of vibrations,
hence the need of the hereby analysis. In further part of initial tests, we
performed recording of pump vibrations during its start-up (Figure 4).

Recording of vibrations during coasting reviled only one harmonic com-
ponent corresponding to the rotational speed of the pump shaft.

The last stage of initial tests, allowing for solving the discrete model
of the shaft, was to determine unknown parameters of shaft’s supports i.e.
rigidity and damping. Particularly difficult was determination of damping
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Fig. 3. Vibration measuring points

Fig. 4. Course of vibration speed during pump coasting
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in hydrodynamic bearings. Deriving of such a parameter on the grounds
of theoretical analyses would be a very complex task. Thus we decided to
determine damping on the basis of experimental tests. In order to do so, a
testing position was constructed (Figure 5) for simulating the real system.

Fig. 5. Testing position for measuring course of vibrations speed during pump coasting

On the basis of experimental tests, the following values of rigidity and
damping parameters were assumed: k=7370746 N/m, c=1223436 Ns/m.

3. Structural model

For calculation of natural frequencies, we applied a discrete model. Nu-
merous examples of shaft calculations show that the results obtained when
using such models do not significantly differ from those acquired with meth-
ods based on distributed mass models. In other words, spatial distribution
of mass of the rotating shaft has a minor influence on its critical rotational
velocity [2, 4].

Figure 6 presents subsequent stages of simplification of the pump’s phys-
ical model up to the form of a discrete model. The aforementioned model
neglects the gyrostatic moment of the two rotors, as they have a compact
structure and low length-to-diameter ratio, l/d.

As it can be seen in Fig. 6, the shaft consists of four discrete masses
supported flexibly at four points of parameters ki and ci. The values of
individual masses were calculated with the Rayleigh energy method.

Calculations for the model from Figure 6c were performed for the fol-
lowing three variants (variant III is presented separately in Figure 7).

Variant I – shaft supported on rigid supports
Data: m1 =600,6 kg, m2 =408,02 kg, m3 =35,55 kg, m4 =83,98 kg.
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Fig. 6. Subsequent stages of model simplification

Fig. 7. Discrete model of shaft, mi [kg], k [N·m−1], c[Ns·m−1]

Variant II – shaft supported on elastic supports
Data: mass as in variant I, k1 =k2 =k3 =k4 =7370746 N/m.
Variant III – shaft supported on supports of rigidity ki and damping ci
Data: mass m, rigidity k as in variant I and II, damping c1 =c2 =c3 =c4 =

1223436 Ns/m.

4. Equations of motion and their solutions

Based on the structural model, we derived the equations of motion. Tak-
ing into account complexity of the model, we selected the method of forces
from among several other known methods. In this method, one applies the
so-called influence coefficients δi j, calculated with methods known from sta-
tistics. The physical sense of the coefficient δi j is the displacement of i-th
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cross-section caused by a generalized unitary force applied to j-th cross-
section.

δ11m1ÿ1 + δ12m2ÿ2+δ13m3ÿ3+δ14m4ÿ4 + y1 = 0
δ21m1ÿ1 + δ22m2ÿ2+δ23m3ÿ3+δ24m4ÿ4 + y2 = 0
δ31m1ÿ1 + δ32m2ÿ2+δ33m3ÿ3+δ34m4ÿ4 + y3 = 0
δ41m1ÿ1 + δ42m2ÿ2+δ43m3ÿ3+δ44m4ÿ4 + y4 = 0.

(4.1)

After substituting the expected solutions yi =ai· sinωt into equations
(4.1), we obtain the characteristic determinant, from which eigenfrequencies
of the system can be derived:

∣∣∣∣∣∣∣∣∣∣∣∣∣

δ11m1ω
2 − 1 δ12m2ω

2 δ13m3ω
2 δ14m4ω

2

δ21m1ω
2 δ22m2ω

2 − 1 δ23m3ω
2 δ24m4ω

2

δ31m1ω
2 δ32m2ω

2 δ33m3ω
2 − 1 δ34m4ω

2

δ41m1ω
2 δ42m2ω

2 δ43m3ω
2 δ44m4ω

2 − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (4.2)

Solving (4.2), we obtain the frequency equation:

A · ω8 + B · ω6 + C · ω4 + D · ω2 + 1 = 0, (4.3)

where the constants A, B, C and D are calculated from (4.2). For example,
A and B have the form:

A= (δ11δ22δ33δ44+2δ11δ23δ24δ34+

2δ22 δ13δ14δ34+2δ33δ12δ14δ24 +2δ44δ12δ13δ23−2δ12δ14 δ23δ34−2δ12 δ13δ24δ34−
2δ13δ14δ23δ24−δ2

12δ33δ44+δ
2
13δ22δ44−δ2

14δ22δ33−δ2
23δ11δ44−δ2

24δ11δ33−
δ2
34δ11δ22+δ

2
12δ

2
34+δ

2
13δ

2
24+δ

2
14δ

2
23)m1m2m3m4 ,

B=
(
−δ11δ22δ33+δ11δ

2
23+δ33δ

2
12+δ22δ

2
13−2δ12δ13δ23

)
m1m2m3+(

−δ11δ22δ44+δ11δ
2
24+δ44δ

2
12+δ22δ

2
14−2δ12δ14δ24

)
m1m2m4+ (−δ11δ33δ44+

δ11δ
2
34+δ44δ

2
13+δ33δ

2
14−2δ13δ14δ34

)
m1m3m4+(

−δ22δ33δ44+δ33δ
2
24+δ44δ

2
23+δ22δ

2
34−2δ23δ24δ34

)
m2m3m4 .

(4.4)
Calculation of the Maxwell influence coefficients in equations (4.1) and (4.2)
is very time-consuming. The form of coefficients δ11, δ12 and δ13 is presented
hereunder:
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δ11=
1
EI


b+c
l2
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l2l23
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l2l3
·
32d2·(2 (l2+l3)

l3
−1)· l3

l23−4 (l3+l4) (l2+l3)


 ·


l22
6

a−a3

6


 .

(4.5)
It is obvious that δi j = δ ji.
After substituting numerical data into Eq. 4.5 (a=518.12 mm, b=1039.85

mm, c=225.03 mm, d=670 mm, e=f=871.6 mm, l2 =1783 mm, l3 =1340
mm, l4 =1743.2 mm, I=8290663 mm4 and E=206000 MPa), one can deter-
mine values of the influence coefficients (Table 2).

Table 2.
Influence coefficients values, variant I

δij Result [m/N]

δ11 3.52908E-08

δ12 = δ21 9.14495E-09

δ13 = δ31 -7.30507E-09

δ14 = δ41 3.43234E-09

δ22 6.38219E-09

δ23 = δ32 -5.67385E-09

δ24 = δ42 2.6659E-09

δ33 1.76234E-08

δ34 = δ43 -1.00043E-08

δ44 4.30617E-08

Finally, after substituting all the data into Eq. 4.3, we obtain

3, 235 ·10−23 ·ω8−1, 209 ·10−17 ·ω6+9, 43 ·10−11ω4−2, 098 ·10−0,5 ·ω2+1 = 0.
(4.6)

After calculations, we determine all roots of the polynomial (4.6):

f1 = 40.63 Hz, f2 = 82.67 Hz, f3 = 126.84 Hz, and f4 = 264.73 Hz.
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Variant II

The equations of motion, similarly as in variant I, have the form of (4.1).
Because the shaft’s support is elastic in this variant, the coefficients δi j should
be calculated in a different way. We applied the Maxwell-Mohr formula,
which takes into account not only the action of forces, but also thermal
influences, elasticity of joints and the influence of non-elastic displacements
on the system deformation [5]. For the considered example, the formula takes
the form of:

δ
′
ia =

∑∫

s

MiMa

EI
ds +

∑ RiRa

k
, (4.7)

where:
δ’ia− displacement of basic system at point i under unitary force applied

to point a [m/N],
Mi, Ma – bending moments caused by actions of unitary forces applied

at points i and a [m],
Ri,Ra – reactions of joints to loads of unitary forces applied at points i

and a [N],
I – moment of inertia of horizontal cross-section [m],
E –Young’s modulus [N/m2].
The values of bending moments Mi, Ma and reactions of joints Ri, Ra

were calculated from equations of the three moments and the formulae for
elastic deformation of supports [5]. These calculations are time-consuming,
although they are not very difficult, so will not be quoted hereby. The values
of influence coefficients are presented in Table 3.

Table 3.
Values of influence coefficients, variant II

δ’ij Result [m/N]

δ’11 1.174E-07

δ’12 = δ’21 6.866E-08

δ’13 = δ’31 1.591E-08

δ’14 = δ’41 -7.47E-09

δ’22 1.06E-07

δ’23 = δ’32 5.91E-08

δ’24 = δ’42 -1.27E-09

δ’33 9.539E-08

δ’34 = δ’43 3.025E-08

δ’44 1.249E-07
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After substituting the data, Eq. (4.3) takes the form:

2, 29048·10−20·ω8−1, 80605·10−14·ω6+2, 49·10−09·ω4−0, 000104·10−05·ω2+1 = 0. (4.8)

Solving the equation for f, we obtain the following four frequencies:

f1 = 18.55Hz, f2 = 37.19Hz, f3 = 48.78Hz, f4 = 125.96Hz.

Variant III

Equations of motion for this variant are as follows:

δ,11m1ÿ1 + δ,12m2ÿ2+δ
,
13m3ÿ3+δ

,
14m4ÿ4 + δ,11c1ẏ1 + δ,12c2ẏ2 + δ,13c3ẏ3 + δ,14c4ẏ4 + y1 = 0

δ,21m1ÿ1 + δ,22m2ÿ2+δ
,
23m3ÿ3+δ

,
24m4ÿ4 + δ,21c1ẏ1 + δ,22c2ẏ2 + δ,23c3ẏ3 + δ,24c4ẏ4 + y2 = 0

δ,31m1ÿ1 + δ,32m2ÿ2+δ
,
33m3ÿ3+δ

,
34m4ÿ4 + δ,31c1ẏ1 + δ,32c2ẏ2 + δ,33c3ẏ3 + δ,34c4ẏ4 + y3 = 0

δ,41m1ÿ1 + δ,42m2ÿ2+δ
,
43m3ÿ3+δ

,
44m4ÿ4 + δ,41c1ẏ1 + δ,42c2ẏ2 + δ,43c3ẏ3 + δ,44c4ẏ4 + y4 = 0.

(4.9)
They can be written in a matrix form as

∆′MŸ + ∆′CẎ + EY = Q, (4.10)

where:
∆’ = [δ’ij] – coefficient matrix containing elasticity,
M − mass matrix,
C − damping matrix,
E − unit matrix,
Q − column matrix (null matrix).
The matrices M and C have the form:

M =



m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4


, (4.11)

C =



c1 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c4


. (4.12)

Assuming solution in the form of y(t) = Aeiωt , after transformations we
obtain:

det[∆’M(−ω2) + ∆’C(ωi) + E] = 0, (4.13)

whose determinant is a polynomial of 8th degree:
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A(ωi)8+B(ωi)7+C(ωi)6+D(ωi)5+E(ωi)4+F(ωi)3+G(ωi)2+Hωi+I = W (ωi),
(4.14)

where: coefficients A, B, C, D, E, F, G, H, I are real numbers. Solution to
(4.14) consists of a real and an imaginary part:

Aω8 −Cω6 + Eω4 −Gω2 + I = Re(ω), (4.15)

−Bω7 + Dω5 − Fω3 + Hω = Im(ω). (4.16)

The solution can be presented in a graphical form, as an amplitude-phase
frequency characteristics (Fig 8), or plots of real and imaginary parts versus
ω (Fig. 9). From the latter, one can read the values of natural frequencies:

f1 = 36.78Hz, f2 = 48.86Hz, f3 = 110.68Hz, f4 = 126.08Hz.

Fig. 8. The amplitude-phase frequency characteristics

5. Numerical calculations, comparison of results

In order to verify correctness of solutions obtained with analytical method,
we performed numerical calculations. The comparisons were made for the
beam from variant I. For numerical calculations, the MSC.Adams software
was used.

Figure 10 presents forms of vibrations of the section of the beam with
rotors, and the vibration frequencies calculated with MSC.Adams.
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Fig. 9. Real and imaginary parts of solution in the function of ω

Unauthenticated | 89.73.89.243
Download Date | 5/2/14 6:29 PM



MODELLING OF VERTICAL SHAFT OF MIXED-FLOW PUMP 543

Fig. 10. Results of numerical analysis with MSC.Adams software

A juxtaposition of all calculations of bending vibrations of the shaft for
different variants of the shaft’s support are presented in Table 4.

Table 4.
Comparison of calculation results for shaft frequency for three variants of supports

Shaft on rigid supports
Shaft on elastic

supports

Shaft on
supports of

rigidity k and
damping c

Analytical
calculations

ADAMS
software

Analytical
calculations

Analytical
calculations

f1[Hz] 40.63 46.07 18.55 36.78

f2 [Hz] 82.67 103.07 37.19 48.86

f3 [Hz] 126.84 163.17 88.78 110.68

f4 [Hz] 264.73 226.75 125.96 126.08

6. Conclusions

1. Comparison of numerical calculations with analytical results for vari-
ant I showed that both methods of calculations were correct. Differences
between calculations resulted from the fact that the mathematical model did
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not take into account moments of inertia of the rotating masses, and neglected
variable rigidity of the shaft. The applied simplifications of numerical model
could also lead to discrepancies.

2. Numerical calculations are much faster, however, analytical calcula-
tions provide information about the form of mutual relations between para-
meters.

3. Having analytical solutions, one can, in the next step, carry out calcu-
lation to determine system sensitivity to individual parameters. In particular,
one can evaluate the influence of support arrangement.

4. It is noticeable that, after taking into account damping in the supports,
one observes significant increase of frequency of vibrations.

Manuscript received by Editorial Board, September 18, 2012;
final version, June 25, 2013.
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Modelowanie pionowego wału pompy diagonalnej

S t r e s z c z e n i e

Celem pracy jest modelowanie wału dużej pionowej pompy diagonalnej, o długości całkowitej:
l=4866mm oraz obliczenie częstości drgań własnych i obrotów krytycznych. Wyznaczono anality-
cznie równania ruchu a następnie sprawdzono uzyskane rezultaty obliczeń za pomocą modelowania
numerycznego. Utrudnienie pracy stanowiło ułożyskowanie wału w czterech łożyskach hydrody-
namicznych o nieznanych parametrach. Jako model dyskretny wału przyjęto belkę czteromasową
podpartą na podatnych podporach o sztywności k i tłumieniu c. Równania ruchu układu wyprowa-
dzono metodą sił. W celu zweryfikowania poprawności wyprowadzonych równań rozważano mo-
dele belek w trzech etapach różniących się konfiguracją podparcia: belka podparta na sztywnych
podporach, belka podparta na podporach sprężystych, belka podparta na podporach podatnych
o sztywności k i tłumieniu c. Rezultaty obliczeń podano w tabelach i na wykresach.

Unauthenticated | 89.73.89.243
Download Date | 5/2/14 6:29 PM


