PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen production and its storage from solar energy

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study is to increase the energy efficiency of the solar panel, to make the waste heat generated under the panel efficient and to store the electrical energy produced from solar panels in the form of hydrogen in boron nitride and boron carbide. Characterization of boron nitride and boron carbide was carried out with Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), differential thermal and thermogravimetric analysis (DTA/TG), Brunauer–Emmett–Teller (BET) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM/EDX). The specific surface areas and pore sizes of the boron nitride and boron carbide were determined as 78 and 20 m2/g; and 3.8 and 11.1 nm, respectively. DTA/TG thermograms showed that boron nitride degraded in one step in the temperature range of 30-550°C and boron carbide degraded in two steps. From experimental studies, approximately 8.7% energy efficiency was achieved and hydrogen energy was costless produced from a renewable energy source excluding system costs. Moreover, it was found that 276% and 208% more hydrogen could be stored in the boron compounds, the boron nitride had more hydrogen storage capacity, and the electrical efficiency of the panel was increased.
Rocznik
Strony
14--25
Opis fizyczny
Bibliogr. 22 poz., rys., wykr.
Twórcy
autor
  • İstanbul University-Cerrahpaşa Faculty of Medicine Fatih/İstanbul, Turkey
Bibliografia
  • 1. Doğan, E.E., Tokcan, P., Kızılduman, B.K. Storage of hydrogen in activated carbons and carbon nanotubes. Advances in Materials Science, 18(4), (2018) 5-16.
  • 2. Ökten, K., Özdemir, M. 2016. Thermal investigation of tanks equipped with glasswool to maintain temperature differences in heat recovery and storage. Sakarya University Journal of Science, 20(2) (2018) 291-299.
  • 3. Mormillan, M., Veziroglu, T.N. Current status of hydrogen energy. Renewable and Sustainable Energy Reviews, 6(1-2), (2002) 141-179.
  • 4. Karabacak, K., Çetin, N. Artificial neural networks for controlling wind–PV power systems: A review. Renewable and Sustainable Energy Reviews, 29, (2014) 804–827.
  • 5. Yang, J., Sudik, A., Wolverton, C., Siegel, D.J. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. Chemical Society Reviews, 39, (2010) 656-675.
  • 6. Chattaraj, P.K., Bandaru, S., Mondal, S. Hydrogen storage in clathrate hydrates. Journal of Physical Chemistry A, 115, (2011) 187-193.
  • 7. Das, R., Chattaraj, P.K. A (T-P) phase diagram of hydrogen storage on (N4C3H)6Li6. Journal of Physical Chemistry A. 116, (2012) 3259-3266.
  • 8. Gutowska, A., Li, L. Shin, Y., Wang, C.M., Li, X.S., Linehan, J.C., Smith, R.S., Kay, B.D., Shaw, B.S.W., Gutowski, M., Autrey, T. Nano scaffold mediates hydrogen release and there activity of ammonia borane. Angewandte Chemie International Edition, 44, (2005) 3578-3582.
  • 9. Nouar, F., Eckert, J., Eubank, J.F., Forster, P., Eddaoudi, M. Zeolite-like metalorganic frameworks (ZMOFs) as hydrogen storage platform: lithium and magnesiumion-exchange and H2-(rho-ZMOF) interaction studies. Journal of the American Chemical Society, 131, (2009) 2864-2870.
  • 10. Stergiannakos, T., Tylianakis, E., Klontzas, E., Froudakis, G.E. Enhancement of hydrogen adsorption in metal-organic frameworks by Mg+2 functionalization: a multiscale computational study. Journal of Physical Chemistry C. 114, (2010) 16855-16858.
  • 11. Paksoy, H., Evliya, H., Turgut, B., Mazman, M., Konuklu, Y., Gök, Ö., Yılmaz, M.Ö., Yılmaz, S., Beyhan, B., Şahan, N. Evaluation of alternative energy sources with thermal energy. 11th Energy Congress, İzmir-Türkiye, 2009.
  • 12. Kozak, M., Kozak, Ş. Energy storage methods. Suleyman Demirel University International Journal of Technological Science, 4(2), (2012) 17-29.
  • 13. Dinçer, I., Rosen, M.A. Thermal energy storage systems and applications. NewYork, 2002.
  • 14. Li, J., Lin, J., Xu, X., Zhang, X., Xue, Y., Mi, J., Mo, Z., Fan, Y., Hu, L., Yang, X., Zhang, J., Meng, F., Yuan, S., Tang, C. Porous boron nitride with a high surface area: hydrogen storage and water treatment. Nanotechnology. 24, (2013) 155603 (7pp).
  • 15. Fakiroğlu, E., Yürüm, Y., Veziroğlu, T.N. A review of hydrogen storage systems based on boron and its compounds. International Journal of Hydrogen Energy. 29, (2004) 1371–1376.
  • 16. Wu, X.J., Gao, Y., Zeng, X.C. Hydrogen storage in pillared Li-dispersed boron carbide nanotubes. Journal of Physical Chemistry C. 112(22), (2008) 8458-8463.
  • 17. Lale, B., Bernard, S., Demirci, U.B. Boron nitride for hydrogen storage. ChemPlusChem. 83, (2018) 893 – 903.
  • 18. Petrushenko, I.K., Petrushenko, K.B. Hydrogen adsorption on graphene, hexagonal boron nitride, and graphene-like boron nitride-carbon heterostructures: A comparative theoretical study. International Journal of Hydrogen Energy. 43, (2018) 801-808.
  • 19. Sattanathan, M., Subramani, S., Mohamed, K., Devarajan, M., Nasir, R.M. Synthesis and characterization of hexagonal boron nitride coating on polyethylene terephthalate. Iranian Polymer Journal. 28, (2019) 969-976.
  • 20. Pillari, L.K., Umasankar, V., Elamathi, P., Chandrasekar, G. Synthesis and characterization of nano hexagonal boron nitride powder and evaluating the influence on aluminium alloy matrix. Materials Today Proceedings. 3, (2016) 2018-2026
  • 21. Al Meslmani, B., Mahmoud, G., Strehlow, B., Mohr, E., Leichtweiß, T., Bakowsky, U. Development of thrombus-resistant and cell compatible crimped polyethylene terephthalate cardiovascular grafts using surface co-immobilized heparin and collagen. Materials Science and Engineering: C, 43, (2014) 538–546.
  • 22. Rustemli, S., Dinçadam, F., Demirtaş, M. Hot water production with solar cells and street lighting. V. Renewable Energy Resources Symposium, 42-29 Diyarbakır-Türkiye, 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3eacff5-e095-4c9b-b59f-e15b3bd8c537
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.