PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of fibre laser welding parameters on the microstructure and weld geometry of commercially pure titanium

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The primary purpose of the study was the metallurgical characterization of laser welds. The weldability of commercial production of pure titanium and titanium alloy (CP-Ti) has also been examined. Design/methodology/approach: In this research, the laser fibre method was used to weld sheets of pure titanium, and then microscopy and scanning electron microscopy were used to study the changes in the microstructure, the depth of weld penetration and the width of the weld area with changing welding parameters. Findings: The results proved that increasing the laser power significantly increases the depth of weld penetration and weld width. When the heat input is increased, the shape of the weld pool changes from a V shape to an hourglass shape. It was also observed that the depth of the crater formed increases with the increase in the laser power due to the increase in the melting and evaporation of the weld metal. Increasing the welding speed also has a negative impact on the weld geometry because it reduces the heat input and absorption of laser energy by the weld metal and thus reduces the melting of the metal. The microstructure of the fusion zone consists of acicular α. Fine grains formed in the weld centre at low heat input; the granules became columnar-like. Since commercially pure titanium contains a small amount of beta-phase stabilizers, the cooling rate is extremely high for martensite to occur. Research limitations/implications: In the future, it is recommended to study the effect of changing welding parameters on the mechanical properties of pure titanium because of its great importance in industrial and medical applications. Originality/value: Studying the effect of changing laser power and welding speed on the metallurgical properties of pure titanium, and consequently its effect on the mechanical properties of welds.
Rocznik
Strony
34--41
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
  • Materials Engineering Faculty, University of Babylon, Hilla, Iraq
  • Materials Engineering Faculty, University of Babylon, Hilla, Iraq
Bibliografia
  • [1] E. Schubert, M. Klassen, I. Zerner, C. Walz, G. Sepold, Light-Weight Structures Produced by Laser Beam Joining for Future Applications in Automobile and Aerospace Industry, Journal of Materials Processing Technology 115/1 (2001) 2-8. DOI: https://doi.org/10.1016/S0924-0136(01)00756-7
  • [2] R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering: A 213/1-2 (1996) 103-114. DOI: https://doi.org/10.1016/0921-5093(96)10233-1
  • [3] C. Li, B. Li, Z. Wu, X. Qi, B. Ye, A. Wang, Stitch welding of Ti−6Al−4V titanium alloy by fiber laser, Transactions of Nonferrous Metals Society of China 27/1 (2017) 91-101. DOI: https://doi.org/10.1016/S1003-6326(17)60010-4
  • [4] D.S. Badkar, S.K. Pandey, G. Buvanashekaran, The Effect of Laser Beam Welding on Microstructure and Mechanical Properties of Commercially Pure Titanium, International Journal of Material Science 4/3 (2009) 299-312.
  • [5] M.J. Torkamany, F.M. Ghaini, E. Papan, S. Dadras, Process Optimization in Titanium Welding with Pulsed Nd:YAG Laser, Science of Advanced Materials 4/3-4 (2012) 489-496. DOI: https://doi.org/10.1166/sam.2012.1307
  • [6] E. Akman, A. Demir, T. Canel, T. Sinmazcelik, Laser welding of Ti6Al4V titanium alloys, Journal of Materials Processing Technology 209/8 (2009) 3705- 3713. DOI: https://doi.org/10.1016/j.jmatprotec.2008.08.026
  • [7] BS EN 4678:2011. Aerospace series. Weldments and brazements for aerospace structures. Joints of metallic materials by laser beam welding. Quality of weldments, 2011.
  • [8] P. Danielson, R. Wilson, D. Alman, Microstructure of titanium welds, Advanced Material & Processes 161/2 (2003) 39-42.
  • [9] L. Chen, G. Shuili, J. Yang, Study on full penetration stability of light alloys sheet laser welding, Proceedings of the 37th International MATADOR Conference, Manchester, 2012, 315-318.
  • [10] J.D. Beguin, V. Gazagne, Y. Balcaen, J. Alexis, E. Andrieu, Laser Welding of Titanium Alloys with a Yb: YAG Disk Source, Materials Science Forum 941 (2018) 845-850. DOI: https://doi.org/10.4028/www.scientific.net/MSF.941.8 45
  • [11] M.J. Jweeg, Z.Kh. Hamdan, A.H. Majeed, K.K. Resan, M. Al-Waily, A new method for measurement the residual stresses in friction stir welding, Archives of Materials Science and Engineering 112/2 (2021) 63-69. DOI: https://doi.org/10.5604/01.3001.0015.6285
  • [12] P. Omoniyi, R.A. Mahamood, N. Arthur, S. Pityana, S. Skhosane, Y. Okamoto, T. Shinonaga, M. Maina, T. Jen, E. Akinlabi, Laser Butt Welding of Thin Ti6Al4V Sheets: Effects of Welding Parameters, Journal of Composite Sciences 5/9 (2021) 246. DOI: https://doi.org/10.3390/jcs5090246
  • [13] Q.H. Jebur, M.J. Jweeg, M. Al-Waily, H.Y. Ahmad, K.K. Resan, Hyperelastic models for the description and simulation of rubber subjected to large tensile loading, Archives of Materials Science and Engineering 108/2 (2021) 75-85. DOI: https://doi.org/10.5604/01.3001.0015.0256
  • [14] E.K. Njim, S.H. Bakhy, M. Al-Waily, Analytical and numerical free vibration analysis of porous functionally graded materials (FGPMs) sandwich plate using Rayleigh-Ritz method, Archives of Materials Science and Engineering 110/1 (2021) 27-41. DOI: https://doi.org/10.5604/01.3001.0015.3593
  • [15] S.H. Bakhy, M. Al-Waily, M.A. Al-Shammari, Analytical and numerical investigation of the free vibration of functionally graded materials sandwich beams, Archives of Materials Science and Engineering 110/2 (2021) 72-85. DOI: https://doi.org/10.5604/01.3001.0015.4314
  • [16] M. Al-Waily, A.M. Jaafar, Energy balance modelling of high velocity impact effect on composite plate structures, Archives of Materials Science and Engineering 111/1 (2021) 14-33. DOI: https://doi.org/10.5604/01.3001.0015.5562
  • [17] E.K. Njim, S.H. Bakhy, M. Al-Waily, Free vibration analysis of imperfect functionally graded sandwich plates: analytical and experimental investigation, Archives of Materials Science and Engineering 111/2 (2021) 49-65. DOI: https://doi.org/10.5604/01.3001.0015.5805
  • [18] E.K. Njim, S.H. Bakhy, M. Al-Waily, Analytical and numerical flexural properties of polymeric porous functionally graded (PFGM) sandwich beams, Journal of Achievements in Materials and Manufacturing Engineering 110/1 (2022) 5-15. DOI: https://doi.org/10.5604/01.3001.0015.7026
  • [19] A. Abdollahi, A.S.A. Huda, S.A. Kabir, Microstructural Characterization and Mechanical Properties of Fiber Laser Welded CP-Ti and Ti-6Al-4V Similar and Dissimilar Joints, Metals 10/6 (2020) 747. DOI: https://doi.org/10.3390/met10060747
  • [20] X. Cao, M. Jahazi, Effect of welding speed on butt joint quality of Ti-6Al-4V alloy welded using a high-power Nd:YAG laser, Optics and Lasers in Engineering 47/11 (2009) 1231-1241. DOI: https://doi.org/10.1016/j.optlaseng.2009.05.010
  • [21] F. Fomin, M. Froend, V. Ventzke, P. Alvarez, S. Bauer, N. Kashaev, Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding, The International Journal of Advanced Manufacturing Technology 97 (2018) 2019-2031. DOI: https://doi.org/10.1007/s00170-018-1968-z
  • [22] M. Junaid, N.M. Baig, M. Shamir, N.F. Khan, K. Rehman, J. Haider, A comparative study of pulsed laser and pulsed TIG welding of Ti-5Al-2.5Sn titanium alloy sheet, Journal of Materials Processing Technology 242 (2017) 24-38. DOI: https://doi.org/10.1016/j.jmatprotec.2016.11.018
  • [23] H. Liu, K. Nakata, J.X. Zhang, N. Yamamoto, J. Liao, Microstructural evolution of fusion zone in laser beam welds of pure titanium, Materials Characterization 65 (2012) 1-7. DOI: https://doi.org/10.1016/j.matchar.2011.12.010
  • [24] T.S. Auwal, S. Ramesh, F. Yusof, S.M. Manladan, A review on laser beam welding of titanium alloys, The International Journal of Advanced Manufacturing Technology 97 (2018) 1071-1098. DOI: https://doi.org/10.1007/s00170-018-2030-x
  • [25] X. Cao, A.S.H. Kabir, P. Wanjara, J. Gholipour, A. Birur, J. Cuddy, M. Medraj, Global and local mechanical properties of autogenously laser welded Ti-6Al-4V, Metallurgical and Materials Transactions A 45 (2014) 1258-1272. DOI: https://doi.org/10.1007/s11661-013-2106-z
  • [26] X. Li, J. Xie, Y. Zhou, Effects of oxygen contamination in the argon shielding gas in laser welding of commercially pure titanium thin sheet, Journal of Materials Science 40/13 (2005) 3437-3443. DOI: https://doi.org/10.1007/s10853-005-0447-8
  • [27] M. Cheepu, D. Venkateswarlu, P.N. Rao, S.S. Kumaran, N. Srinivasan, Effect of Process Parameters and Heat Input on Weld Bead Geometry of Laser Welded Titanium Ti-6Al-4V Alloy, Materials Science Forum 969 (2019) 613-618. DOI: https://doi.org/10.4028/www.scientific.net/MSF.969.6 13
  • [28] S. Lathabai, B.L. Jarvis, K.J. Barton, Comparison of keyhole and conventional gas tungsten arc welds in commercially pure titanium, Materials Science and Engineering: A 299/1-2 (2001) 81-93. DOI: https://doi.org/10.1016/S0921-5093(00)01408-8
  • [29] Y.T. Kuo, L.S. Jeng, Porosity reduction in Nd–YAG laser welding of stainless steel and Inconel alloy by using a pulsed wave, Journal of Physics D: Applied Physics 38 (2005) 722. DOI: https://doi.org/10.1088/0022-3727/38/5/009
  • [30] A. Lisiecki, Welding of titanium alloy by different types of lasers, Archives of Materials Science and Engineering 58/2 (2012) 209-218.
  • [31] A. Squillace, U. Prisco, S. Ciliberto, A. Astarita, Effect of welding parameters on morphology and mechanical properties of Ti–6Al–4V laser beam welded butt joints, Journal of Materials Processing Technology 212/2 (2012) 427-436. DOI: https://doi.org/10.1016/j.jmatprotec.2011.10.005
  • [32] G.R. Mohammed, M. Ishak, S.N. Aqida, H.A Abdulhadi, Weld bead profile of laser welding dissimilar joints stainless steel, IOP Conference Series: Materials Science and Engineering 257 (2017) 012072. DOI: https://doi.org/10.1088/1757-899X/257/1/012072
  • [33] L.S. Campanelli, G. Casalino, M. Mortello, A. Angelastro, A.D. Ludovico, Microstructural characteristics and mechanical properties of Ti6Al4V alloy fiber laser welds, Procedia CIRP 33 (2015) 428- 433. DOI: https://doi.org/10.1016/j.procir.2015.06.098
  • [34] A.S.H. Kabir, X. Cao, M. Medraj, P. Wanjara, J. Cuddy, A. Birur, Effect of Welding Speed and Defocusing Distance on the Quality of Laser Welded Ti-6Al-4V, Proceedings of the Materials Science and Technology Conference and Exhibition “MS&T 2010”, Houston, Texas, 2010, 2787-2797.
  • [35] L.V. Murav'ev, Problems of Pore Formation in Welded Joints of Titanium Alloys, Metal Science and Heat Treatment 47/7-8 (2005) 282-288. DOI: https://doi.org/10.1007/s11041-005-0068-5
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3e50c8d-14ea-4c25-9bbf-8dd4db1b6d69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.