
34

Volume 117	

Issue 1

September 2022

Pages 34-41 

International Scientific Journal

published monthly by the  

World Academy of Materials  

and Manufacturing Engineering

© Copyright by International OCSCO World Press. All rights reserved. 2022RESEARCH PAPER

DOI: 10.5604/01.3001.0016.1395

Effect of fibre laser welding parameters 
on the microstructure and weld geometry 
of commercially pure titanium

M.M. Abdulridha, A.S.J.A.Z. Jilabi *
Materials Engineering Faculty, University of Babylon, Hilla, Iraq
* �Corresponding e-mail address: sameeakilabi@gmail.com
ORCID identifier:  https://orcid.org/0000-0003-3636-3738 (M.M.A.)

 

ABSTRACT

Purpose: The primary purpose of the study was the metallurgical characterization of laser 
welds. The weldability of commercial production of pure titanium and titanium alloy (CP-Ti) has 
also been examined.
Design/methodology/approach: In this research, the laser fibre method was used to weld 
sheets of pure titanium, and then microscopy and scanning electron microscopy were used to 
study the changes in the microstructure, the depth of weld penetration and the width of the weld 
area with changing welding parameters.
Findings: The results proved that increasing the laser power significantly increases the depth 
of weld penetration and weld width. When the heat input is increased, the shape of the weld 
pool changes from a V shape to an hourglass shape. It was also observed that the depth of the 
crater formed increases with the increase in the laser power due to the increase in the melting 
and evaporation of the weld metal. Increasing the welding speed also has a negative impact 
on the weld geometry because it reduces the heat input and absorption of laser energy by the 
weld metal and thus reduces the melting of the metal. The microstructure of the fusion zone 
consists of acicular α. Fine grains formed in the weld centre at low heat input; the granules 
became columnar-like. Since commercially pure titanium contains a small amount of beta-
phase stabilizers, the cooling rate is extremely high for martensite to occur.
Research limitations/implications: In the future, it is recommended to study the effect of 
changing welding parameters on the mechanical properties of pure titanium because of its great 
importance in industrial and medical applications.
Originality/value: Studying the effect of changing laser power and welding speed on the 
metallurgical properties of pure titanium, and consequently its effect on the mechanical 
properties of welds.
Keywords: Fibre laser welding, Laser power, Welding speed, CP titanium, Depth penetration 
weld, Weld width
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1. Introduction 
 
Since of its remarkable mix of characteristics, titanium, 

as well as its alloys, are one of the greatest engineering 
materials for industrial applications. They are appealing to 
numerous industries ranging from structural components to 
aviation and aerospace applications because of their good 
formability, corrosion resistance, excellent toughness, 
fatigue life, and great strength/weight proportion [1]. 
Titanium alloys have become classified into five categories 
based on the alloying elements that are present: near-beta 
alloys, alpha-beta (β) alloys and alpha (α) alloys. These five 
varieties of titanium alloys have a broad variety of 
mechanical qualities, allowing enterprises to choose the one 
that best matches their needs [2]. Although traditional 
welding processes may be utilized to combine Ti alloy 
sheets, the material's reduced thermal conductivity and 
thermal stresses caused by substantial heat inputs throughout 
welding generally result in workpiece deformation [3]. Deep 
penetration, limited bead width, and a restricted heating 
impacted area seem to be common features of the great 
power density laser beams welding (LBW) technique. The 
procedures of plasma stream welding and electron beam 
welding seem to be likewise comparable [4,5]. Gas shielding 
is critical in laser welding titanium alloys because titanium 
becomes extremely reactive with nitrogen, oxygen, and 
hydrogen at high temps, resulting in lattice deformation or 
weld fractures. [6]. Since titanium undergoes an allotropic 
phase shift around 882 degrees centigrade, where alpha 
(HCP) converts into beta, the titanium alloys and titanium 
microstructure may be quite complicated (BCC). Welding 
conditions have a great effect on the shape of the weld pool 
and the microstructure formed in the FZ and the HAZ. When 
the heat input increases or the welding speed decreases, the 
shape of the weld pool changes from a V- shape to an 
hourglass shape [7], The decrease in welding speed leads to 
a change in the shape of the weld from that of an hourglass 
to the shape of a nail head, and tendency to trap gases and 
form porosity at high speeds [8,9]. The heating and rapid 
cooling during the laser welding process lead to forming 
three zones FZ, HAZ and BM. The microstructure of 
commercially pure titanium in the weld zone is composed of 
a needle-shaped alpha because the cooling rate is insufficient 
to form martensite because the stabilizing elements of the 

beta phase are very few. The heat-affected zone can be easily 
distinguished from the base metal due to the difference in 
their microstructure. In contrast, the weld zone is difficult to 
distinguish from the heat-affected zone due to the similarity 
in the microstructure [8,10].  

 
 

2. Experimental set-up and materials  
used 
 

The material used is Grade 2 (CP) with a thickness of 0.3 
cm. The specimen's dimensions utilized are 35 mm × 50 mm 
as shown in Figure 1. The chemical composition of these 
samples is shown in Table 1. The laser equipment was a 
YFL-1500, a single mode (1080 nm, continuous waves) 
fibre laser with an optimum power of 1500 W and a 
Gaussian beam (Fig. 2). In this experiment, laser power 
between 600 and 1500 W, and welding speeds of 2-10 mm/s 
were used. The focusing optical mode has a focal length of 
15 cm and a minimum laser spot size of 200 μm. Pure argon 
(99.9%) has been employed as a shielding gas for all welds 
with an incidence angle of 45° and a flow rate of 10 l/min to 
avoid oxidations. 

 

 
 

Fig. 1. Dimensions of samples to be joined (in millimetres) 
 

 
 

Fig. 2. Fibre laser machine 
 
Table 1. 
Chemical analysis of CP-Ti (Grade 2) used in the study 

Materials Chemical analysis, wt.% 
Ti Al Fe C O H N V 

Grade 2-CP-Ti (nominal) R - Max-0.3 Max-0.08 Max-0.25 Max-0.015 Max-0.03 - 
Result R - 0.05 0.012 0.092 0.001 0.018 - 

1.	��Introduction

2.	�Experimental set-up and materials 
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Specimens were subsequently prepared for micro-
structural analysis by mounting them on a thermosetting 
resin and then grinding them with silicon carbide sheets of 
various grain sizes (320-1200). After polishing with 
different particle sizes of diamond paste, the specimens were 
etched utilizing Kroll's reagent (85ml HO+10 ml HNO3+5 ml 
HF), ASTM E407 [11], to achieve a mirror surface. The heat 
input (HI) in fibre laser welding could be estimated utilizing 
formula (1) [12]; Table 2 details the parameters employed in 
the fibre LBW process. 

 

  (1) 
 

Therefore, it can depend on the experimental technique 
to calculate the out results, with different input parameters 
effect, and with low error. Since the experimental was 
perfect technique can be used to evaluate the out results with 
various parameters effects with low discrepancies [13-16]. 
 
Table 2. 
The parameters that were employed with the fibre LBW 
process 

Parameters 
 

No. of samples 

Laser 
power, 

kW 

Welding 
speed, 
mm/s 

Heat 
input, 
J/mm 

A1 0.6 10 60 
A2 0.9 10 90 
A3 1.2 10 120 
A4 1.5 10 150 
A5 0.6 15 40 
A6 0.9 15 60 
A7 1.2 15 80 
A8 1.5 15 100 
A9 0.6 20 30 

A10 0.9 20 45 
A11 1.2 20 60 
A12 1.5 20 75 
A13 0.6 25 24 
A14 0.9 25 36 
A15 1.2 25 48 
A16 1.5 25 60 

 
3. Results and discussion 

 
3.1 Microstructural evolution during LBW of Ti 
alloys 

 
During the LBW processes, the heat source interacts with 

a specific area of the workpiece material [17]. As a result, 
the weldment undergoes an extreme temperature gradient 

that leads to the formation of three separate zones with a 
heterogeneous microstructure: unaffected base metals (BM), 
heating-affecting zones (HAZ) and fusion zones (FZ) 
[18,19], as demonstrated in Figure 3. Despite a clear 
distinction between the HAZ and BM, the microstructures 
created in the HAZ and FZ were so identical that the fusion 
line could not be accurately determined. Instead, the fusion 
line is approximated based on the location of the weld root 
and weld toes [20]. The size and shape of the weld pool 
impact the mechanical properties of the weld joint by 
controlling the shape and size of the grain [21]. It was noted 
that the welds have a keyhole penetration style. 

 

 
 

Fig. 3. Weld microstructures of the A8 specimen 
 

In this study, 16 samples of the (CP-Ti) were similarly 
joined using the fibre laser method in different welding 
conditions, resulting in different heat inputs. The micro-
structure and mechanical properties are directly related to 
the heat input during welding, as it is the main factor for the 
occurrence of phase transitions. Higher inputs are achieved 
with higher laser power or lower welding speed and vice 
versa. Therefore, the microstructure of the samples with the 
lowest heat input, the highest heat input and the highest 
tensile strength (highest welding efficiency) was studied. 

The CP-Ti base metal microstructure consists of 
equiaxed α particles and intergranular β phase (BCC 
structure). The β phase is dispersed along α phase 
boundaries (HCP structure). The light and dark portions 
represent phases of α and intergranular β, respectively, as 
demonstrated in Figure 4; this is consistent with what was 
found in some literature [22,23]. 

The HAZ microstructure of the A13 sample (lowest heat 
input) composed of acicular alpha grain gets coarser towards 
FZ, which was likely created by epitaxial growth during 
solidification, which is likely due to the increased heat input 
in this region compared to the base metals as shown in 
Figure 5. At a laser power of 0.6 kW and a welding speed 
of 10 mm/sec, the heat input is 24 J/mm, so the cooling rate 
is high, and the resulting microstructure is fine due to the 
lack of sufficient growth time. In addition, it has been 
observed that increasing the laser power to 2.5 kW and 
welding speed of 10 mm/s would cause an increase in the 

3.	�Results and discussion

3.1.	� Microstructural evolution during LBW  
of Ti alloys
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particle size of the HAZ in the A4 specimen because of the 
increase in the heat input to 150 J/mm; this agrees with 
[24,25], as shown in Figure 6. The lack of β-α stabilisers and 
low cooling rate may explain why there was no martensite 
in the HAZ of CP-Ti; this agrees with [26]. 

 

 
 

Fig. 4. CP Titanium base metal microstructure 
 

 
 

Fig. 5. Microstructure of HAZ of the A13 at the lowest heat 
input 

 

 
 
Fig. 6. Microstructure of the HAZ of the A4 at the highest 
heat input 
 

Equiaxed particles were typically developed in the 
middle part of the FZ by growth and nucleation. In the FZ of 
pure metal, however, only columnar particles may develop 
epitaxially growth. The alloying components were thus few 
the growth and nucleation of equiaxed particles were not 

easy [23,27]. At the highest heat input, the FZ consisted 
mostly of a coarse acicular α due to a decrease in the cooling 
rate, as shown in Figure 7, while at the lowest heat input, the 
FZ became composed of a fine acicular α due to the increase 
in the cooling rate, as shown in Figure 8.  

 

 
 

Fig. 7. The FZ microstructure of the A4 at the highest heat 
input by using an a) optical image, b) SEM image 

 

 
 

Fig. 8. The FZ microstructure of the A13 at the highest heat 
input using an a) optical image, b) SEM image 

 
3.2 Influence of laser welding situations on the 
penetration depth of the weld and weld zone  
width  
 

This test was carried out after cutting the samples into 
specimens with dimensions (20 * 3) mm and making moulds 
to easily install them in the grinding, polishing and etching 
processes, and then inspecting them with an electron 
microscope described in Chapter Three. Welding cross-
sections are usually characterized by three zones (FZ, HAZ 
and BM) as shown in Figure 9.  

Figure 10 shows the effect of changing the laser power 
at a low welding speed of 10mm/s on the weld penetration 
depth of (CP-Ti) samples welded using a fibre laser method. 
It shows the presence of incomplete weld penetration when 
the laser power is 0.6 kW as a result of insufficient heat 
input. The V shape formed at a low heat input of (24, 30, 36, 
40, 48, 60 J/mm), while the hourglass shape formed at high 
heat input of (75, 80, 100, 120, 150 J/mm). When the laser 

3.2.	�Influence of laser welding situations  
on the penetration depth of the weld  
and weld zone width
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power increases, the weld penetration and weld pool width 
increase at a welding speed of 10 mm/s. Increasing the laser 
power will increase the absorption of the laser beam by the 
metal surface, increasing the width of the upper and lower 
surfaces of the FZ, which agrees with [28-31]. On the other 
hand, a crater was observed with all laser power values, and 
its depth increased with increasing laser power. The main 
reason is that high power or high heat input promotes 
evaporation and expulsion of the molten metal from the 
sides into the centre of the weld, which agrees with [32]. 
 

 
 

Fig. 9. Weld cross-section characterization 
 

 
 

Fig. 10. the effect increases laser power on depth penetration 
at a welding speed of 10 mm/s of (CP-Ti) specimens 

 
Porosity was also observed at low laser power, such as 

in samples of 0.6KW and 0.9KW because the heat input is 
low, so the shape of the weld pool is V-shaped and the 
cooling rate is high. As the weld metal solidifies, gas bubbles 
close to the surface can escape, while bubbles farther from 
the surface remain trapped. The porosity decreases as the 
laser power increase, and the weld pool turns into an 
hourglass shape due to the lower cooling rate. So there is 
time for gas bubbles to escape from the upper and lower 
surfaces [33]. 

Figures 11 and 12 show the effect of increasing welding 
speed on weld penetration at 1.5 kW laser power. It is 
observed from the figures that the depth of weld penetration 
decreases with the increase in the welding speed, as well as 

a decrease in the top and bottom weld widths. This is caused 
by the low heat input due to the high welding speed because 
there is not enough time for the laser beam to interact with 
the metal surface; this agrees with [29]. For FZ widths, laser 
power alone has proven to be more effective than welding 
speed. However, the HAZ was shown to be wider at lower 
speeds when the laser power was relatively high. In this 
state, the welding speed has a much greater impact on HAZ 
widths than laser power [33], where the weld pool turns from 
the shape of an hourglass to the shape of a nail head, as 
shown in the A12 sample. It also causes a decrease in the 
width of the weld pool and the HAZ [34,35], as shown in 
Figure 11. It was also found that crater depth decreased with 
increasing welding speed. 
 

 
 

Fig. 11. The effect of increasing welding speed on depth 
penetration at laser power 1.5 kW 
 

 
 

Fig. 12. Effects the laser power on weld penetration 
 

Figure (13) shows the effect of laser power and welding 
speed on the width of the heat-affected zone extent from the 
weld centreline. It was also noted that the porosity increases 
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with the increase in welding speed due to the lack of time 
required for the gases to exit from the weld metal [23,35].  

 

  
 

Fig. 13. Effect of the heat input on HAZ extent from the weld 
centreline 
 
4. Conclusions 
 

The weldability of Commercial production of Pure 
Titanium and a titanium alloy (CP-Ti) has been examined. 
The experiment was conducted on 0.3 cm thickness plates 
that were welded in a square butt welding arrangement. 
Utilizing a narrow fibre-laser source, the technique was 
carried out in continuous-wave emissions. The primary 
purpose of the study is on the metallurgical characterization 
of laser welds. It is possible to draw the next conclusions: 
1. Three distinct zone has been distinguished by variations 

in microstructure across the welds, namely the FZ, HAZ 
and BM (CP-Ti). 

2. B (CP-Ti) had an equiaxed microstructure in BM, but a 
non-uniform particle size distribution over the thickness. 

3. Increasing the laser power from 0.6 kW to 1.5 kW at 10 
mm/s welding speeding, the welding penetration depth 
increased from 1.08 mm to 2.62 mm, while increasing 
the welding speed significantly affected the width of the 
HAZ and reduced the weld penetration to 2.1 mm at 1.5 
kW and 25 mm/s, due to the lack of heat input. 

4. When the welding speeds increased, the HAZ and the FZ 
formed from a fine acicular α, which was most probably 
formed throughout solidification via epitaxial growth, 
thus the hardness increases and ductility decreases, and 
it is coarser at lower speeds.  

5. The absence of martensite (α) phase in the weld zone was 
due to the lack of beta phase stabilizers. 
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