PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Grain Size and Feed Rate on Selected Aspects of Corundum Ceramic Grinding Using Spherical Diamond Heads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of experimental research on the grinding of corundum ceramics in the pre-sintered state, with spherical diamond heads. The aim of the experiment was to determine the effect of grain size and feed rate on selected aspects of the grinding process of corundum ceramics with the use of spherical diamond heads. In the experiment, grinding wheels with a ball diameter of 3 mm and different grain sizes were used; the grain numbers were D64, D91, D126 and D181. The tests were carried out on the Ultrasonic 20 Linear machining center at a constant rotational rate of the grinding wheel n = 38,000 rpm and a grinding depth of 30 µm. The feed rate was set on 3 values: 200, 400 and 600 mm / min. During the research, the process temperature was recorded with a thermal imaging camera. The topography of grinding wheels before and after the grinding process and the topography of the ground surface were also measured. The parameters Sa and Ŝz (Ŝz= Spk+Sk+Svk) were used to characterize the grinding heads. The conducted analyses showed the dependence of the parameters Sa and Ŝz of new grinding heads on the grain size described by the quadratic function (R^(2 )≥0.94). Statistically significant changes in the parameters Sa and Ŝz on the cutting surface of the grinding wheel, which occurred as a result of its wear, were observed. There was no significant relationship between the feed rate and the wear of grinding heads, probably due to the relatively small volume of the material removed. A positive correlation between the Sa and Ŝz parameters of the ground object and the grain size was observed. The research also showed an increase in the process temperature with an increase in the feed rate and an increase in the grain size.
Twórcy
autor
  • Department of Manufacturing Techniques and Automation, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
autor
  • Department of Manufacturing Techniques and Automation, Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Schmidt Ch. Koordinatenschleifen dentalkeramischer Werkstoffe mit kleinen Diamantwerkzeugen. Shaker. 2008.
  • 2. Alkhalefah H. Precise Drilling of Holes in Alumina Ceramic (Al2O3) by Rotary Ultrasonic Drilling and its Parameter Optimization using MOGA-II. Materials. 2020;13(5):1059.
  • 3. Cao J., Wu Y., Lu D., Fujimoto M., Nomura M. Fundamental machining characteristics of ultrasonic assisted internal grinding of SiC ceramics. Materials and Manufacturing Processes. 2014;29(5):557–563.
  • 4. Ullah AMMS., Caggiano A., Kubo A., Chowdhury M. Elucidating grinding mechanism by theoretical and Experimental Investigations. Materials. 2018;11(2):274.
  • 5. Sanaei N., Fatemi A. Analysis of the effect of surface roughness on fatigue performance of powder bed fusion additive manufactured metals. Theoretical and Applied Fracture Mechanics. 2020;108:102638.
  • 6. Panneer R., Harisubramanyabalaji S.P., Sribalaj C.A., Vivek A., Vigneshwaran G. Prediction of surface roughness using spectral analysis and image comparison of audio signals. International Journal of Precision Engineering and Manufacturing. 2016;17:709–715.
  • 7. Borsoi Klein T. Prozessstrategien beim NC-formschleifen mit schleifstiften. Fraunhofer; 2015.
  • 8. Uhlmann E., Borsoi Klein T., Hochschild L., Bäcker C. Influence of structuring by abrasive machining on the tribological properties of workpiece surfaces. Procedia Engineering. 2011;19:363–370.
  • 9. Denkena B., Koehler J., Turger A., Helmecke P., Correa T., Hurschler C. Manufacturing conditioned wear of all-ceramic knee prostheses. Procedia CIRP. 2013;5:179–184.
  • 10. Koprowski J., Uhlmann E., Weingaertner W. Influence of tilt and lead angles on 5-axis grinding with spherical mounted points. Production Engenering. 2018;12:449–455.
  • 11. Ozturk E., Tunc T., Budak E. Investigation of lead and tilt angle effects In 5-axisball-end milling processes. International Journal of Machine Tools and Manufacture. 2009;49(14):1053–1062.
  • 12. Sadílek M., Poruba Z., Cepová L., Šajgalík M. Increasing the Accuracy of Free-Form Surface Multiaxis Milling. Materials. 2021;14(1):25.
  • 13. Burek J., Szajna A., Lisowicz J., Rydzak T. Surface accuracy and roughness parameters in free form grinding with the use of an spherical diamond head. Mechanik. 2017;90(8–9):763–765.
  • 14. Burek J., Szajna A., Rydzak T. Influence of the tilt angle of an spherical diamond head for roughness parameters. Mechanik. 2018;91(8–9):706–708.
  • 15. Burek J., Szajna A. Influence of the lead angle of an spherical diamond head on the roughness parameters of corundum ceramics. Mechanik. 2019;92(11)748–750.
  • 16. Wu J., Cheng J., Gao Ch., Yu T., Guo Z. Research on predicting model of surface roughness in small-scale grinding of brittle materials considering grinding tool topography. International Journal of Mechanical Sciences. 2020;166:105263.
  • 17. Kanakarajan P., Sundaram S., Kumaravel A., Rajasekard R., Venkatachalam R. Prediction of the surface roughness and wheel wear of modern ceramic material (Al 2 O 3 ) during grinding using multiple regression analysis model. Indian Journal of Engineering & Materials Sciences. 2017;24:182–186.
  • 18. Brosse A., Naisson P., Hamdi H., Bergheau J.M. Temperature measurement and heat flux characterizationin grinding using thermography. In: Proc. of 10th Advances in Materials and Processing Technologies: AMPT 2007, Daejeon, Korea, 2007, 1396–1405.
  • 19. Grochalski K., Jabłoński P., Talar R., Twardowski P., Wieczorowski M., Jakubek B., Ruka W. Temperature Measurement of Modern Cutting Tools During Turning. Advances in Science and Technology Research Journal. 2020;14(4):37–48.
  • 20. Urzędowski A., Wójcicka-Migasiuk D., Buraczyńska B. Visual Effects of Surface Emissivity in Thermal Imaging. Advances in Science and Technology Research Journal. 2020;14(2):215–222.
  • 21. ISO 25178-2:2012. Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters.
  • 22. Shi Z., Malkin S. Wear of Electroplated CBN Grinding Wheels. Journal of Manufacturing Science and Engineering. 2005;128(1):110–118.
  • 23. Bazan A., Kawalec A., Rydzak T., Kubik P. Variation of Grain Height Characteristics of Electroplated cBN Grinding-Wheel Active Surfaces Associated with Their Wear. Metals. 2020;10(11):1479.
  • 24. Tian Y.B., Zhong Z.W., Rawat R. Comparative study on grinding of thin walled and honeycomb-structured components with two CBN wheels. The International Journal of Advanced Manufacturing Technology. 2015;81:1097–1108.
  • 25. Soo S.L., Shyha I.S., Barnett T., Aspinwall D.K., Sim W.M. Grinding performance and workpiece integrity when superabrasive edge routing carbon fibre reinforced plastic (CFRP) composites. CIRP Annals - Manufacturing Technology. 2012;61:295–298.
  • 26. Burrows J.M., Dewes R.C., Aspinwall D. K. Grinding of Inconel 718 and Udimet 720 Using Superabrasive Grinding Points Mounted on a High Speed Machining Centre. In: Proc. of 33rd International MATADOR Conference: Formerly The International Machine Tool Desisgn and Research Conference, London, England. 2000;447–452.
  • 27. Caggiano A., Teti R. CBN Grinding Performance Improvement in Aircraft Engine Components Manufacture. Procedia CIRP. 2013;9:109–114.
  • 28. Chen J., Shen J., Huang H., Xu X. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels. Journal of Materials Processing Technology. 2010;210(6– 7):899–906.
  • 29. Denkena B., Grove T., Lucas H. Influences of grinding with Toric CBN grinding tools on surface and subsurface of 1.3344 PM steel. Journal of Materials Processing Technology. 2016;210:541–548.
  • 30. Hood R., Cooper P., Aspinwall D.K., Soo S.L., Lee D.S. Creep feed grinding of gamma-TiAl using single layer electroplated diamond superabrasive wheels. Journal of Manufacturing Science and Technology. 2015;11:36–44.
  • 31. Vashista M., Kumar S., Ghosh A., Paul S. Surface Integrity in Grinding Medium Carbon Steel with Miniature Electroplated Monolayer cBN Wheel. Journal of Materials Engineering and Performance. 2010;19(9):1248–1255.
  • 32. Zhao Z., Fu Y., Xu J., Zhang Z., Liu Z., He J. An investigation on high-efficiency profile grinding of directionalsolidified nickel-based superalloys DZ125 with electroplated CBN wheel. The International Journal of Advanced Manufacturing Technology. 2016;83(1):1–11.
  • 33. Rowe W.B. Grinding technology-theory and applications of machining with abrasives. Tribology International. 1990;23(6):443.
  • 34. Chakrabarti S., Paul S. Numerical modelling of surface topography in superabrasive grinding. The International Journal of Advanced Manufacturing Technology. 2008;39:29–38.
  • 35. Zhu D., Li B., Ding H. An improved grinding temperature model considering grain geometry and distribution. The International Journal of Advanced Manufacturing Technology. 2013;67:1393–1406.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3e2d628-248b-462b-b787-2373f2428ef0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.