PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Can titanium anodization lead to the formation of antimicrobial surfaces?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, there has been observed a growing need for novel, multifunctional materials that would not only replace, but also heal the damaged tissues. In this paper, the titanium dioxide films manufactured by anodic oxidation method are investigated. The study of their structurization and antimicrobial properties of the coatings is presented. Samples anodized in water solutions of ethylene glycol exhibited various character -from structurized to porous ones. As the study revealed, all samples acted anti-adhesive in terms of bacterial (Escherichia coli) and fungal (Candida albicans) surface colonisation.
Twórcy
  • Lodz University of Technology, Mechanical Faculty, Institute of Materials Science and Engineering, Stefanowskiego 1/15 St., 90-924 Lodz (doktorant)
  • Lodz University of Technology, Mechanical Faculty, Institute of Materials Science and Engineering, Stefanowskiego 1/15 St., 90-924 Lodz
  • Lodz University of Technology, Mechanical Faculty, Institute of Materials Science and Engineering, Stefanowskiego 1/15 St., 90-924 Lodz
Bibliografia
  • [1] A. Colas, J. Curtis, Silicone Biomaterials: History and Chemistry & Medical Applications of silicones, Biomaterials Science, 2nd edition
  • [2] A. Tathe, M. Ghodke, A.P. Nikalje, A brief review: biomaterials and their applications, International Journal of Pharmacy and Pharmaceutical Sciences 2, 2010, 19-23
  • [3] A. Robin, M. Bernardes de Almeida Ribeiro, J.L. Rosa, R.Z. Nakazato, M.B. Silva, Formation of TiO2 nanotube layer by anodization of titanium in ethylene glycol-H2O electrolyte, Journal of Surface Engineered Materials and Advanced Technology 4, 2014, 123-130
  • [4] L. Sun, S. Zhang, X. Sun, X. He, Effect of the geometry of the anodized titania nanotube array on the performance of dye-sensitized solar cells, Journal of Nanoscience and Nanotechnology 10, 2010, 4551-4561
  • [5] Y-C. Lim, Z. Zainal, W-T. Tan, M.Z. Hussein, Anodization Parameters Influencing the growth of titania nanotubes and their photoelectrochemical response, International Journal of Photoenergy, 2012, 1-9
  • [6] S.R. Shah, A.M. Tatara, R.N. D'Souza, A.G. Mikos, F.K. Kasper, Evolving strategies for preventing biofilm on implantable materials, Materials Today 15, 2013, 177-182
  • [7] P. Went, M. Krismer, B. Frischut, Recurrence of infection after revision of infected hip arthroplasties, Journal of bones and joints surgery 77, 1995, 307-309
  • [8] R.M. Donlan, J. W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms, Clinical Microbiology Revision 15, 2002, 167-193
  • [9] C.R. Kokare, S. Chakraborty, A,N, Khopade, K.R. Mahadik, Biofilm: Importance and applications, Indian Journal of Biotechnology 8, 2009, 159-168
  • [10] J.S. Webb, M. Giskov, S. Kjelleberg, Bacterial biofilms: prokaryotic adventures in multicellularity, Current Opinion in Microbiology 6, 2003, 578-585
  • [11] C. Desrousseaux, V. Sautou, S. Descamps, O. Traore, Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation, Journal of Hospital Infection 85, 2013, 87-93
  • [12] C. R. Arciola, D. Campoccia, P. Speziale, L. Montanaro, J. W. Costerton, Biofilm formation in Staphyloccocus, implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials, Biomaterials 33, 2012, 5967-5982
  • [13] D.B. Schlisselberg, S. Yaron, The effects of stainless steel finish on Salmonella Typhimurim attachment, biofilm formation and sensitivity to chlorine, Food Microbiology 35, 2013, 65-72
  • [14] J. Li, K. Hirota, T. Goto, H. Yumoto, Y. Mikaye, T. Ichikawa, Biofilm formation of Candida albicans on implant overdenture materials and its removal, Journal of dentistry 40, 2012, 686-692
  • [15] S.H. Flint, J.D. Brook, P.J. Bremer, Properties of the stainless steel substrate, influencing the adhesion of thermo-resistant Streptococci, Journal of Food Engineering 43, 2000, 235-242
  • [16] A.S.D. Al-Radha, D. Dymock, C. Younes, D. O'Sullivan, Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion, Journal of dentistry 40, 2012, 146-153
  • [17] D. Seigsmund, A. Undisz, S. Germerodt, S. Schuster, M. Rettenmayr, Quantification of the interaction between biomaterial surfaces and bacteria by 3D modelling, Acta Biomaterialia 10, 2014, 267-275
  • [18] K.A. Whitehead, J. Verran, The effect of surface topography on the retention of microorganisms, Food and Bioproducts Processing 84, 2006, 253-259
  • [19] K. Bazaka, R.J. Crawford, E.P. Ivanova, Do bacteria differentiate between degrees of nanoscale surface roughness?, Biotechnology Journal 6, 2011, 1103-1114
  • [20] R.J. Crawford, H.K. Webb, V.K. Truong, J. Hasan, E.P. Ivanova, Surface topographical factors influencing bacgterial attachment, Advances in Colloid and Interface Science 179-182, 2012, 142-149
  • [21] M. Medeiros Ronsani, A. Ulbrich Mores Rymovicz, T. Martins Meira, A. M. Trindade Gregio, O. Guariza Filho, O. Motohiro Tanaka, E. A. Ribeiro Rosa, Virulence modulation of Candida albicans biofilms by metal ions commonly released from orthodontic devices, Microbial Pathogenesis 51 (2011), s: 421-425
  • [22] K. Bazaka, M. V. Jacob, R. J. Crawford, E. P. Ivanova, Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms, Applied Microbiology and Biotechnology 95 (2012), s: 299-311
  • [23] C.E. ZoBell. The influence of solid surface on the physiological activities of bacteria in sea water, Journal of Bacteriology (1943), s:33-86
  • [24] Q. Zhao, Y. Liu, C. Wang, S. Wang, N. Peng, C. Jeynes, Reduction of bacterial adhesion on ion-implanted stainless steel surfaces, Medical Engineering & Physics 30, 2008, 341-349
  • [25] A. Atay, B. Piskin, H. Akin, C. Sipahi, A. Karakas, M. A. Saracli, Evaluation of Candida albicans adherence on the surface of various maxillofacial silicone materials, Journal de Mycologie Medicale 23, 2013, 27-32
  • [26] D. Campoccia, L. Montanaro, C. R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces, Biomaterials 34, 2013, 8533-8554
  • [27] S.M. Dizaj, F. Loftipour, M.Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles, Materials Science and Engineering C 44, 2014, 278-284
  • [28] Z. Huang, P-C. Maness, D.M. Blake, E.J. Wolfrum, S.L. Smolinski, W.A. Jacoby, Bactericidal mode of titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology A: Chemistry 130, 2000, 163-170
  • [29] U. Diebold, The surface science of titanium dioxide, Surface Science Reports 48, 2003, 53-229
  • [30] J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Shmuki, TiO2 nanotubes: Self-organized electrochemical formation, properties and applications, Current Opinion in Solid State and Materials Science 11, 2007, 3-18
  • [31] X. Liu, P.K. Chu, C. Ding, Surface modification of titanium, titanium alloys and related materials for biomedical applications, Materials Science and Engineering R 47, 2004, 49-121
  • [32] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine: material science, surface science, engineering, biological responses and medical applications, In: Engineering Materials, Springer 2001
  • [33] N. Ohtsu, S. Komiya, K. Kodama, Effect of electrolytes on anodic oxidation of titanium for fabricating titanium dioxide photocatalyst, Thin Solid Films 534, 2013, 70-75
  • [34] X. Zhu, J. Chen, L. Scheidler, R. Reichl, J. Geis-Gerstofer, Effects of topography and composition of titanium surface oxides on osteoblast responses, Biomaterials 25, 2004, 4087-4103
  • [35] L. Wu, J. Liu, M. Yu, S. Li, H. Liang, M. Zhu, Effect of anodization time on morphology and electrochemical impedance of anodic oxide films on titanium alloy in tartrate solution, International Journal of Electrochemical Science 9, 2014, 5012-5024
  • [36] G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, C.A. Grimes, A review of highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications, Solar energy Materials & Solar Cells 90, 2006, 2011-2075
  • [37] A. Haring, A. Morris, M. Hu, Controlling morphological parameters of anodized titania nanotubes for optimized solar energy applications, Materials 5, 2012, 1890-1909
  • [38] V. Galstyan, E. Comini, G. Faglia, G. Sberveglieri, TiO2 nanotubes: recent advances in synthesis and gas sensing properties, Sensors 13, 2013, 14813-14838
  • [39] K.Das, S. Bose, A. Bandyopadhyay, Surface modifications and cell-materials interactions with anodized Ti, Acta Biomaterialia 3, 2007, 573-585
  • [40] P. Mandracci, F. Mussano, P. Rivolo, S. Carossa, Surface treatments and functional coatings for biocompartibility improvement and bacterial adhesion reduction in dental implantology, Coatings 6, 2016, 1-22
  • [41] J.Yao, H.Wang, Preparation of mesoporous titania using furfuryl alcohol and polymerizable solvent, Industrial & Engineering Chemistry Research 46, 2007, 6264—6268
  • [42] S. Peglow, M-M. Pohl, A. Kruth, V. Bruser, Plasma basedsynthesis, electron microscopy, and optical characterization of Au-, Ag-,and Ag/Au-Core-Shell nanoparticles, The Journal of Physical Chemistry C 119, 2015,563-572
  • [43] K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chemical Reviews 114, 2014, 9385-9454
  • [44] D. Fattakhova-Rohlfing, A. Zaleska, T. Bein, Three-dimensional titanium dioxide nanomaterials, Chemical Reviews 114, 2014, 9487-9558
  • [45] K.S. Raja, M. Misra, K. Paramguru, Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium, Electrochimica Acta 51, 2005, 154-165
  • [46] J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes, Electrochimica Acta 52, 2006, 1258-1264
  • [47] B. Vijayan, N.M. Dimitrijevic, T. Rajh, K. Gray, Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes, The Journal of Physical Chemistry 114, 2010, 12994-13002
  • [48] X. Quan, S. Yang, X. Ruan, H. Zhao, Preparation of titania nanotubes and their environmental applications as electrode, Environmental Science&Technology 39, 2005, 3770-3775
  • [49] W.L. Chaffin, J.L. Lopez-Ribot, M. Casanova, D. Gozalbo, J.P. Martinez, Cell wall and secreted proteins of Candida albicans: identification, function and expression, Microbiology and Molecular Biology Reviews 62, 1998, 130-180
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3e16dd9-a88e-4b65-983d-288ec01bfd43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.