PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiotracer investigation of a pulp and paper mill effl uent treatment plant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Applications of Radiation Science and Technology (ICARST-2017) (24-28 April 2017 ; Vienna, Austria)
Języki publikacji
EN
Abstrakty
EN
The pulp and paper industry is highly dependent on water for most of its processes, producing a significant amount of wastewater that should be treated to comply with environmental standards before its discharge into surface-water reservoirs. The wastewater generated primarily consists of substantial amounts of organic, inorganic, toxic and pathogenic compounds in addition to nutrients, which are treated in an effluent treatment plant that often combines primary, secondary, tertiary and advanced treatments. However, the treatment methods vary from industry to industry according to the process utilized. The effective performance of effluent treatment plants is crucial from both environmental and economic points of view. Radiotracer techniques can be effectively used to optimize performance and detect anomalies like dead zones, bypassing, channelling, etc. in wastewater treatment plants. Experiments on the distribution of residence time were performed on the aeration tank and secondary clarifier of a full-scale pulp and paper mill to study the flow behaviour as well as locate system anomalies and hence evaluate the performance of the treatment plants using the radiotracer I-131. The convolution method was applied to model the system with an imperfect impulse radiotracer input. The aeration tank was working efficiently in the absence of any dead zones or bypassing. Various hydrodynamic models available in the literature were applied on the aeration tank and secondary clarifier to obtain the hydraulic representation of the systems.
Czasopismo
Rocznik
Strony
289--294
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
autor
  • Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004, India, Tel.: +91 981 501 5705
autor
  • Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004, India, Tel.: +91 981 501 5705
autor
  • Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004, India, Tel.: +91 981 501 5705
autor
  • Department of Chemical Engineering, Thapar Institute of Engineering and Technology, Bhadson Road, Patiala, Punjab 147004, India, Tel.: +91 981 501 5705
autor
  • Isotope Production and Application Division, Bhabha Atomic Research Centre, Mumbai, India
autor
  • Isotope Production and Application Division, Bhabha Atomic Research Centre, Mumbai, India
autor
  • Shreyans Industries Ltd., Village Malikpur, Sangrur District, Ahmedgarh, Punjab 148021, India
  • Shreyans Industries Ltd., Village Malikpur, Sangrur District, Ahmedgarh, Punjab 148021, India
Bibliografia
  • 1. Bajpai, P. (2001). Microbial degradation of pollutants in pulp mill effluents. Adv. Appl. Microbiol., 48, 79–134. DOI: 10.1016/S0065-2164(01)48001-4.
  • 2. Pokhrel, D., & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater – a review. Sci. Total Environ., 333(1/3), 37–58. DOI: 10.1016/j.scitotenv.2004.05.017
  • 3. Thompson, G., Swain, J., Kay, M., & Forster, C. (2001). The treatment of pulp and paper mill effluent: a review. Bioresour. Technol., 77(3), 275–286.
  • 4. Phiri, O., Mumba, P., Moyo, B. H. Z., & Kadewa, W. (2005). Assessment of the impact of industrial effluents on water quality of receiving rivers in urban areas of Malawi. Int. J. Environ. Sci. Technol., 2(3), 237–244. DOI: 10.1007/bf03325882.
  • 5. Suthar, S., Nema, A. K., Chabukdhara, M., & Gupta, S. K. (2009). Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J. Hazard. Mater., 171(1), 1088–1095. DOI: 10.1016/j.jhazmat.2009.06.109.
  • 6. Metcalf & Eddy Inc., Burton, F. L., Stensel, H. D., & Tchobanoglous, G. (2003). Wastewater engineering: Treatment and reuse (4th ed). New Delhi: McGrawHill. 7. Peavey, H. S., Rowe, D. R., & Tchobanoglous, G. (2013). Environmental engineering (3rd ed.). New Delhi: McGraw-Hill.
  • 8. International Atomic Energy Agency. (2008). Radiotracer residence time distribution method for industrial and environmental applications. Vienna: IAEA. (Training Course Series No. 31). Available from http://www-pub.iaea.org/books/IAEABooks/7891/Radiotracer-Residence-Time-Distribution-Methodfor-Industrial-and-Environmental-Applications.
  • 9. International Atomic Energy Agency. (2011). Radiotracer applications in wastewater treatment plants. Vienna: IAEA. (Training Course Series No. 49).Available from http://www-pub.iaea.org/books/IAEABooks/8552/Radiotracer-Applications-in-WastewaterTreatment-Plants.
  • 10. Koennecke, H. G., Luther, D., Koepping, K., Schoen, J., & Ulrich, H. (1984). Studies of the hydrodynamic properties in biological clarification plants using radiotracers. Clean-Soil, Air, Water, 12(4), 431–434.DOI: 10.1002/aheh.19840120416.
  • 11. Othman, N., & Kamarudin, S. K. (2014). Radiotracer technology in mixing processes for industrial applications. Sci. World J., 2014, 768604. DOI: 10.1155/2014/768604.
  • 12. Pant, H., Kundu, A., & Nigam, K. (2001). Radiotracer applications in chemical process industry. Rev. Chem. Eng., 17(3), 165–252. DOI: 10.1515/REVCE.2001.17.3.165.
  • 13. Pant, H. J., Sharma, V. K., Singh, G., Raman, V. K., Bornare, J., & Sonde, R. R. (2012). Radiotracer investigation in a rotary fl uidized bioreactor. J. Radioanal. Nucl. Chem., 294(1), 59–63. DOI: 10.1007/s10967-011-1511-2.
  • 14. Audic, J., Fayoux, C., Lesty, Y., & Brisset, P. (1994). Sludge retention times distribution in clarifier: a key point for population dynamic and nutrients removal control. Water Sci. Technol., 29(7), 57–60.
  • 15. Battaglia, A., Fox, P., & Pohland, F. (1993). Calculation of residence time distribution from tracer recycle experiments. Water Res., 27(2), 337–341. DOI:10.1016/0043-1354(93)90093-W.
  • 16. Borroto, J., Domınguez, J., Griffith, J., Fick, M., & Leclerc, J. (2003). Technetium-99m as a tracer for the liquid RTD measurement in opaque anaerobic digester: application in a sugar wastewater treatment plant. Chem. Eng. Process.-Process Intensification, 42(11), 857–865.
  • 17. Chmielewski, A. G., Owczarczyk, A., & Palige, J. (1998). Radiotracer investigations of industrial waste water equalizer-clarifiers. Nukleonika, 43(2), 185–194.
  • 18. Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M., & El-Samie, F. A. (2010). Laboratory experiments and modeling for industrial radiotracer applications. Appl. Radiat. Isot., 68(6), 1049–1056.DOI: 10.1016/j.apradiso.2010.01.044.
  • 19. Sánchez, F., Viedma, A., & Kaiser, A. (2016). Hydraulic characterization of an activated sludge reactor with recycling system by tracer experiment and analytical models. Water Res., 101, 382–392. DOI: 10.1016/j.watres.2016.05.094.
  • 20. Levenspiel, O. (2001). Chemical reaction engineering (3rd ed.). New Delhi: Wiley.
  • 21. Fogler, S. H. (2011). Elements of chemical reactionengineering (4th ed.). New Delhi: PHI.
  • 22. Sarkar, M., Sangal, V. K., Sharma, V. K., Samantray, J., Bhunia, H., Bajpai, P. K., Kumar, A., Naithani, A.K., & Pant, H. J. (2017). Radiotracer investigation andmodeling of an activated sludge system in a pulp and paper industry. Appl. Radiat. Isot., 130, 270–275.DOI: 10.1016/j.apradiso.2017.10.016.
  • 23. Kim, H. S., Shin, M. S., Jang, D. S., & Jung, S. H. (2006). Indepth diagnosis of a secondary clarifier by the application of radiotracer technique and numerical modeling. Water Sci. Technol., 54(8), 83–92. DOI: 10.2166/wst.2006.857.
  • 24. Othman, N., Hassan, N. P. I. M., Yahya, R., Adnan,M. A. K., Shari, M. R., Hassan, H., & Mahmood, A.A. (2017). Radiotracer application in Malaysia: ResidenceTime Distribution study. Malays. J. Anal. Sci.,21(2), 445–451. DOI: 10.17576/mjas-2017-2102-20.
  • 25. Farooq, M., Khan, I., Gul, S., Palige, J., & Dobrowolski,A. (2003). Radiotracer investigations of municipal sewage treatment stations. Nukleonika, 48(1), 57–61.
  • 26. Leclerc, J., Schweich, D., Bernard, A., & Detrez, C.(1995). DTS: a Software Package for Flow Simulation in Reactors. Oil & Gas Science and Technology-Rev. IFP, 50(5), 641–656. DOI: 10.2516/ogst:1995039.
  • 27. Gutierrez, C. G., Dias, E. F., & Gut, J. A. (2010). Residence time distribution in holding tubes using generalized convection model and numerical convolution for non-ideal tracer detection. J. Food Eng., 98(2), 248–256. DOI: 10.1016/j.jfoodeng.2010.01.004.
  • 28. Lemoullec, Y., Potier, O., Gentric, C., & Leclerc, J. -P. (2008). A general correlation to predict axial dispersion coefficients in aerated channel reactors. Water Res., 42(6), 1767–1777. DOI: 10.1016/j.watres.2007.10.041.
  • 29. Chmielewski, A. G., & Selecki, A. (1979). Application of radioactive tracers to some processes on a large scale. Isotopenpraxis-Isot. Environ. Health Stud., 15(9), 276–281.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3def711-8fae-4fbf-9a41-977185659ab7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.