PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new chaotic hyperjerk system with a half-line of equilibrium points, its dynamic analysis, multistability, circuit simulation and anti-synchronization via backstepping control

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, we present a new four-dimensional chaotic hyperjerk system with a half-line of equilibrium points. In the chaos literature, it is well-known that chaotic systems with an infinite number of equilibrium points exhibit hidden attractors. Thus, we deduce in this research work that the new chaotic hyperjerk system has hidden attractors. We next study the new chaotic hyperjerk system for a dynamic analysis using bifurcation plots and Lyapunov Exponents (LE) diagrams.We exhibit that the new hyperjerk system has a special property of multistability with coexisting attractors. Using Multisim version 14.2, we carry out an electronic circuit simulation for the proposed 4-D chaotic hyperjerk system with a half-line of equilibrium points. Finally, as an application in control engineering, we apply backstepping control for achieving antisynchronization of a pair of new chaotic hyperjerk systems taken as master-slave systems, which has important applications in communication systems.
Rocznik
Strony
123--143
Opis fizyczny
Bibliogr. 30 poz., fot., rys., wzory
Twórcy
  • Centre for Control Systems, Vel Tech University, 400 Feet Outer Ring Road, Avadi, Chennai-600062 Tamil Nadu, India
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin Terengganu, Malaysia
  • Department of Management Sciences, Echahid Cheikh Larbi Tebessi University, Route de Constantine, 12022, Tebessa, Algeria
  • Faculty of Information and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
autor
  • Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Gong Badak, 21300, Terengganu, Malaysia
  • Department of Mechanical Engineering, Universitas Muhammadiyah Tasikmalaya, Jawa Barat 46196, Indonesia
  • Department of Computer Science and Engineering, KKR & KSR Institute of Technology and Sciences, Vinjanampadu, Vatticherukuru Mandal, Guntur-522017, Andhra Pradesh, India
autor
  • Department of Computer Science and Engineering, KKR & KSR Institute of Technology and Sciences, Vinjanampadu, Vatticherukuru Mandal, Guntur-522017, Andhra Pradesh, India
Bibliografia
  • [1] E. Petavratzis, C. Volos and I. Stouboulos: Experimental study of terrain coverage of an autonomous chaotic mobile robot. Integration, 90(5), (2023), 104-114. DOI: 10.1016/j.vlsi.2023.01.010
  • [2] A.P. Singh, G. Kumar, G.S. Dhillon and H. Taneja: Hybridization of chaos theory and dragonfly algorithm to maximize spatial area coverage of swarm robots. Evolutionary Intelligence, 17(3), (2024), 1327-1340. DOI: 10.1007/s12065-023-00823-5
  • [3] K. Huang, C. Li, X. Cen and G. Chen: Constructing chaotic oscillators with memory components. Chaos, Solitons and Fractals, 183 (2024). DOI: 10.1016/j.chaos.2024.114917
  • [4] P. Durairaj, K. Premalatha, S. Kanagaraj, Z. Zheng and K. Rajagopal: Emergence of nonchaotic bursting extreme events in a quadratic jerk oscillator. Chaos, Solitons and Fractals, 185 (2024). DOI: 10.1016/j.chaos.2024.115083
  • [5] J. Fang, J. Wang, N. Fang and Y. Jiang: Design and analysis of a group of correlative and switchable dual memristor hyperchaotic systems. Journal of Nonlinear Mathematical Physics, 31(1), (2024). DOI: 10.1007/s44198-024-00204-1
  • [6] Q. Lai and S. Guo: Heterogeneous coexisting attractors, large-scale amplitude control and finite-time synchronization of central cyclic memristive neural networks. Neural Networks, 178 (2024). DOI: 10.1016/j.neunet.2024.106412
  • [7] R. Abinandhitha, R. Sakthivel, S. Anandhi and O.M. Kwon: Composite resilient reliable control for nonlinear chaotic semi-Markov jump fuzzy systems with multi-source disturbances. Engineering Applications of Artificial Intelligence, 133 (2024). DOI: 10.1016/j.engappai.2024.108121
  • [8] L. Hu, X. Xu, W. Ren and M. Han: Hierarchical evolving fuzzy system: A method for multidimensional chaotic time series online prediction. IEEE Transactions on Fuzzy Systems, 32(6), (2024), 3329-3341. DOI: 10.1109/TFUZZ.2023.3348847
  • [9] J. Zhang, J. Bi, Y. Guo and P. Wang: Dynamical analysis and circuit realization of a high complexity fourth-order double-wing chaotic system with transient chaos and its application in image encryption. Physica Scripta, 99(7), (2024). DOI: 10.1088/1402-4896/ad564d
  • [10] F.Q. Meng and G. Wu: A color image encryption and decryption scheme based on extended DNA coding and fractional-order 5D hyper-chaotic system. Expert Systems with Applications, 254 (2024). DOI: 10.1016/j.eswa.2024.124413
  • [11] S. Yan, J. Wang and L. Li: Analysis of a new three-dimensional jerk chaotic system with transient chaos and its adaptive backstepping synchronous control. Integration, 98 (2024). DOI: 10.1016/j.vlsi.2024.102210
  • [12] C. Li, A. Akgul, L. Bi, Y. Xu and C. Zhang: A chaotic jerk oscillator with interlocked offset boosting. European Physical Journal Plus, 139(3), (2024). DOI: 10.1140/epjp/s13360-024-05040-2
  • [13] R. Kengne, J.T. Mbe, J. Fotsing, A.B. Mezatio, F.J. Ntsafack Manekeng and R. Tchitnga: Dynamics and synchronization of a novel 4D-hyperjerk autonomous chaotic system with a Van der Pol nonlinearity. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 78(9), (2023), 801-821. DOI: 10.1515/zna-2023-0063
  • [14] E. Zambrano-Serrano and A. Anzo-Hernandez: A novel antimonotic hyperjerk system: Analysis, synchronization and circuit design. Physica D: Nonlinear Phenomena, 424 (2021). DOI: 10.1016/j.physd.2021.132927
  • [15] A. Sambas, M. Miroslav, S. Vaidyanathan, B. Ovilla-Martinez, E. Tlelo-Cuautle, A.A.A. El-Latif, B. Abd-El-Atty, K. Benkouider and T. Bonny: A new hyperjerk system with a half line equilibrium: Multistability, period doubling reversals, antimonotonocity, electronic circuit, FPGA design, and an application to image encryption. IEEE Access, 12 (2024), 9177-9194. DOI: 10.1109/ACCESS.2024.3351693
  • [16] S. Vaidyanathan, I.M. Moroz and A. Sambas: A new hyperjerk dynamical system with hyperchaotic attractor and two saddle-focus rest points exhibiting Hopf bifurcations, its hyperchaos synchronisation and circuit implementation. International Journal of Modelling, Identification and Control, 33(4), 299-310. DOI: 10.1504/IJMIC.2019.107481
  • [17] V.-T. Pham, S. Vaidyanathan, C. Volos and T. Kapitaniak: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors. Springer Verlag, Berlin, 2019.
  • [18] G. Dou, W. Guo, Z. Li and C. Wang: Dynamics analysis of memristor chaotic circuit with coexisting hidden attractors. European Physical Journal Plus, 139(4), (2024). DOI: 10.1140/epjp/s13360-024-05140-z
  • [19] A. Tiwari, P.P. Singh and B.K. Roy: A realizable chaotic system with interesting sets of equilibria, characteristics, and its underactuated predefined-time sliding mode control. Chaos, Solitons and Fractals, 185 (2024). DOI: 10.1016/j.chaos.2024.115179
  • [20] C. Dong and M. Yang: A novel 4D memristor-based hyperchaotic system with hidden attractors: Dynamics, periodic orbits analysis, and DSP realization. Chinese Journal of Physics, 89 (2024). DOI: 10.1016/j.cjph.2024.04.003
  • [21] X. Shi, Y. Yang, X. Dai, C. Xiang and Y. Feng: Andronov-Hopf and Bogdanov-Takens bifurcations in a Filippov Hindmarsh-Rose system with switching policy for the slow variable. Physica D: Nonlinear Phenomena, 466 (2024). DOI: 10.1016/j.physd.2024.134217
  • [22] E. Abbasi and S. Jafari: Chaotic dynamics in X-ray free-electron lasers with an optical undulator. Scientific Reports, 14(1). DOI: 10.1038/s41598-024-51891-1
  • [23] L. Zhang, Z. Li and Y. Peng: A hidden grid multi-scroll chaotic system coined with two multi-stable memristors. Chaos, Solitons and Fractals, 185 (2024). DOI: 10.1016/j.chaos.2024.115109
  • [24] A.N.N. Gilmolk and R.M. Aref: Lightweight image encryption using a novel chaotic technique for the safe internet of things. International Journal of Computational Intelligence Systems, 17(1), (2024). DOI: 10.1007/s44196-024-00535-3
  • [25] I.A. Shepelev, A.V. Bukh and G.I. Strelkova: Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators. Chaos, Solitons and Fractals, 162 (2022). DOI: 10.1016/j.chaos.2022.112447
  • [26] B. Ganesan and M. Annamalai: Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional. Chaos, Solitons and Fractals, 174 (2023). DOI: 10.1016/j.chaos.2023.113898
  • [27] S. Vaidyanathan and A.T. Azar: Backstepping Control of Nonlinear Dynamical Systems, Academic Press, Cambridge, Massachusetts, USA, 2020.
  • [28] X. Liu, N. Li, C. Liu, J. Fu and H. Wang: Parameter tuning of modified adaptive back-stepping controller for strict-feedback nonlinear systems. Automatica, 166 (2024). DOI: 10.1016/j.automatica.2024.111726
  • [29] S. Yan, J. Wang and L. Li: Analysis of a new three-dimensional jerk chaotic system with transient chaos and its adaptive backstepping synchronous control. Integration, 98 (2024). DOI: 10.2139/ssrn.4775234
  • [30] S. Yan, J. Wang, E. Wang, Q. Wang, X. Sun and L. Li: A four-dimensional chaotic system with coexisting attractors and its backstepping control and synchronization. Integration, 91(2), (2023), 67-78. DOI: 10.1016/j.vlsi.2023.03.001
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3d2747d-c169-4a61-b7da-d13083563c65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.