Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Ladle to tundish melt transfer is paramount importance over the last three decades to controlling the cleanliness of high value steel. Tundish is an important buffer between ladle and mould where inclusion separation, flotation can be enhanced and exposed slag eye formation can be hindered by applying the knowledge of fluid dynamics as well heat transfer by changing the design of conventional flow modifiers towards production of ultra clean steel. Design/methodology/approach: In current numerical investigation a new conceptual flow control device called ‘vacuum shroud (VS)’ has been proposed to reduce slag eye formation, emulsifications and unwanted inclusions generations. Due to upward suction force from the side of the pouring nozzle the device is quite capable to reduce turbulence and emulsification within the tundish melt. Findings: Approximately 76% improvement in the overall process and 40% enhancement to inclusion floatability are predictable by using current flow control device (FCD). Research limitations/implications: Slag eye formation during pouring of liquid steel to tundish is a barrier to clean steel production on sustained manner. Several efforts have been made over the decades to resolve this phenomenon by suppressing the turbulence within this reactor incorporating many innovative flow control refractory’s like turbo-stop, trumpet shroud, advance pouring box, dissipative shroud, velocity break shroud, swirling flow shroud etc. But ultimate success is not possible to reach. Originality/value: The present investigation is development of an innovative flow control device (FCD) to control the aforementioned problems within this metallurgical reactor.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
18--34
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, India, Pincode-247667
Bibliografia
- [1] T. Bhattacharya, A.J. Brown, C.M. Muller, J.P. Angelo, M.S. Lee, K.N. Singh, P. Kaushik, Development of next-generation impact pads for producing ultraclean steel using mathematical models and plant trials, Proceedings of the AISTech 2016 Conference, Pittsburgh, 2016, 1547-1572.
- [2] K Chattopadhyay, M Isac, R.I.L Guthrie, Effect of submergence depth of the ladle shroud on liquid steel quality output from a delta shaped four strand tundish, Ironmaking and Steelmaking 38/5 (2011) 398-400.
- [3] J. Zhang, J. Li, Y. Yan, Z. Chen, S. Yang, J. Zhao, Z. Jiang , A comparative study of fluid flow and mass transfer in a trumpet-shaped ladle shroud using large eddy simulation, Metallurgical and Materials Transactions B 47 (2016) 495-507.
- [4] K. Morales-Higa, R.I.L. Guthrie, M. Isac, R.D. Morales, Ladle shroud as a flow control device for tundish operations, Metallurgical and Materials Transactions B 44 (2013) 63-79.
- [5] J. Zhang, S. Yang, J. Li, W. Yang, Y. Wang, X. Guo, Large eddy simulation on flow structure in a dissipative ladle shroud and a tundish, ISIJ International 55/8 (2015) 1684-1692.
- [6] D. Chatterjee, Designing of a novel shroud for improving the quality of steel in tundish, Advanced Materials Research 585 (2012) 359-363.
- [7] G. Solorio-Díaz, R.D. Morales, J. Palafax-Ramos, L. García-Demedices, A. Ramos-Banderas, Analysis of fluid flow turbulence in tundishes fed by a swirling ladle shroud, ISIJ International 44/6 (2004) 1024-1032.
- [8] G. SolorioDiaz, R. Davila-Morales, J. de J. BarretoSandoval, H.J. Vergara-Hernández, A. RamosBanderas, S.R. Galvan, Numerical modelling of dissipation phenomena in a new ladle shroud for fluidynamic control and its effect on inclusions removal in a slab tundish, Steel Research International 85/5 (2013) 863-874.
- [9] J. Madias, D.M.M. Ferreyra, R. Villoria, A. Garam Endy, Design and plant experience using an advanced pouring box to receive and distribute the steel in a six strand tundish, ISIJ International 39/8 (1999) 787-794.
- [10] S. Chatterjee, K. Chattopadhyay, Tundish open eye formation in inert gas-shrouded tundishes: a macroscopic model from first principles, Metallurgical and Materials Transactions B 47 (2016) 3099-3114.
- [11] K. Chattopadhyay, M. Hasan, M. Isac, R.I.L. Guthrie, Physical and mathematical modeling of inert gasshrouded ladle nozzles and their role on slag behavior and fluid flow patterns in a delta-shaped, four-strand tundish, Metallurgical and Materials Transactions B 41 (2016) 225-233.
- [12] Y. Sahai, T. Emi, Tundish technology for clean steel production, World Scientific Publishing Co. Pte. Ltd., 2008, 1-313.
- [13] K. Chattopadhyay, M. Isac, R.I.L. Guthrie, Effect of flow modifiers on liquid metal cleanliness in fourstrand delta shaped billet caster tundish, Ironmaking and Steelmaking 39/6 (2012) 454-462.
- [14] S. Garcia-Hernandez, J. de J. Barreto, R.D. Morales, E. Gutierrez, B.A. Martinez-Lara, Modeling of Slag Emulsification during ladle change and Tundish Filling Operation, Proceedings of the 6th International Congress “Science & Technology of Steelmaking”, Bejing, China, 2015, 559-562.
- [15] S. Garcia-Hernandez, J. de J. Barreto, R.D. Morales, A. Ceballos Huerta, E. Gutierrez, Proceedings of the 20th IAS Steel Conference, Rosario, Santa Fe, Argentina, 2014, 391-399.
- [16] D. Mazumdar, R.I.L. Guthrie, The physical and mathematical tundish systems, ISIJ International 39/6 (1999) 524-547.
- [17] K. Chattopadhyay, M. Isac, and R.I.L. Guthrie, Physical and mathematical modelling of steelmaking tundish operations: a review of the last decade (19992009), ISIJ International 50/3 (2010) 331-348.
- [18] R.I.L. Guthrie, Fluid flows in metallurgy – friend or foe, Metallurgical and Materials Transactions B 35 (2004) 417-437.
- [19] B.H. Reis, W.V. Bielefeldt, A.C.F. Vilela, Absorption of non-metallic inclusions by steelmaking slags – a review, Journal of Materials Research and Technology 3/2 (2014) 179-185.
- [20] H. Neuhaus, Apparatus for purifying in continuous casting silicon-and or aluminum killed steel, United States Patent: Patent No- 3,887,171, 1975.
- [21] K. Ishiyama, M. Yoshida, I. Suzuki, I. Kudo, A. Otaki, N. Okuyama, Tundish for continuous casting of free cutting steel, United States Patent: Patent No- 4,671,499, 1987.
- [22] M. Schmidt, T.W. Fenicle, Continuous caster tundish having wall dams, United States Patent: Patent No- 4,715,586, 1987.
- [23] K. Vo Thanh, M. Rigaud, Ladle stream breaker, United States Patent- Patent No- 4,776,570, 1988.
- [24] M. Soofi, Tundish impact pad, United States Patent- Patent No- 5,072,916, 1991.
- [25] K.J. Saylol, Turbulence inhibiting tundish and impact pad and method of using, United States Patent: Patent No- 5,358,551, 1994.
- [26] G. Hohenbichler, G. Eckerstorfer, M. Brummayer, Sequence casting process for producing a high-purity cast metal strand, United States Patent: Patent No- 7,789,123, 2010.
- [27] G. Arth, A. Viertauer, G. Hackl, G. Krumpel, B. Petritz, D. Meure , Tundish technology and processes: ladle to mould systems and solutions (Part I), RHI Bulletin 1 (2016) 39-44.
- [28] Y. Wang, Y. Zhong, B. Wang, Z. Lei, W. Ren, Z. Ren, Numerical and experimental analysis of flow phenomenon in centrifugal flow tundish, ISIJ International 49/10 (2009) 1542-1550.
- [29] Ansys Fluent 6.3 User’s Guide, 2006, 1-2501.
- [30] C.A. Llanos, S. Garcia-Hernandez, J.A. RamosBanderas, J. de J. Barreto, G. Solorio-Diaz, Multiphase modeling of the fluid dynamics of bottom argon bubbling during ladle operations, ISIJ International 50/3 (2010) 396-402.
- [31] W. Rodi, Turbulence models and their application in hydraulics – a state art of the review, Rotherdam, Netherland, 2000, 21-29.
- [32] A. Ghosh (Ed.), Secondary steelmaking-principles and applications, Chapter 11: D. Mazumdar, Modeling of secondary steelmaking processes, CRC Press, Boca Raton, Florida, 2001, 265-295.
- [33] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering 3 (1974) 269-289.
- [34] R.D. Morales, J. Palafox-Ramos, J. de J. Barreto, S. Lopez-Ramirez, D. Zacharias, Melt flow control in a multistrand tundish using a turbulence inhibitor, Metallurgical and Materials Transactions B 31 (2000) 1505-1515.
- [35] T. Merder, The influence of the shape of turbulence inhibitors on the hydrodynamic conditions occuring in a tundish, Archives of Metallurgy and Materials 58/4 (2013) 1111-1117.
- [36] S. Solvkyh, V. Klimov, S. Malich, Metal-flow impact pad and diffuser for tundish, European Patent Application, Patent No- EP 2 537 610 A2, 2012.
- [37] R. Schwarze, D. Haubold, C. Kratzsch, Numerical study of effects of pour box design on tundish flow characteristics, Ironmaking and Steelmaking 42/2 (2015) 148-153.
- [38] H.-J. Odenthal, R. Bolling, H. Pfeifer, J.-F. Holzhauser, F.-J. Wahlers, Mechanism of fluid flow in a continuous casting tundish with different turbostoppers, Steel Research International 72/11-12 (2001) 466-476.
- [39] S. Chatterjee, K. Chattopadhyay, Physical modeling of slag ‘eye’ in an inert gas shrouded tundish using dimensional analysis, Metallurgical and Materials Transactions B 47 (2016) 508-521.
- [40] S. Chatterjee, K. Chattopadhyay, Formation of slag ‘eye’ in an inert gas shrouded tundish, ISIJ International 55/7 (2015) 1416-1424.
- [41] Z. Lin, R.I.L. Guthrie, Modeling of metallurgical emulsions, Metallurgical and Materials Transactions B 25 (1994) 855-864.
- [42] R.D. Morales, S. Garcia-Hernandez, J. de J. Barreto, A. Ceballos-Huerta, I. Calderon-Ramos, E. Gutierrez, Multiphase flow modeling of slag entrainment during ladle change-over operation, Metallurgical and Materials Transactions B 47 (2016) 2595-2606.
- [43] L. Zhang, B.G. Thomas, State of the art in the control of inclusions during steel ingot casting, Metallurgical and Materials Transactions B 37 (2006) 733-761.
- [44] L. Zhang, B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ International 43/3 (2003) 271-291.
- [45] K. Takahashi, M. Ando, T. Ishii, Numerical investigation of unsteady molten steel flow and inclusion behavior in the tundish in the ladle change period, ISIJ International 54/2 (2014) 304-310.
- [46] Y.J. Kang, L. Yu, D. Sichen, Study of inclusion removal mechanism around open eye in ladle treatment, Ironmaking and Steelmaking 34/3 (2007) 253-261.
- [47] H. Bai, B.G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B 32 (2001) 1143-1159.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3cd6a01-0477-4770-b09a-5141dc265875