PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The utilisation of conceptual and data-driven models for hydrological modelling in semi-arid and humid areas of the Antalya basin in Turkey

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrological modelling is essential for improving water management and planning efficiency and sustainability. In this study, lumped conceptual models [i.e., Génie Rural à 4 paramètres Journalier (GR4J), Génie Rural à 6 paramètres Journalier (GR6J)] and wavelet-based data-driven models [Wavelet-Genetic algorithm-Artifcial neural network (WGANN), Wavelet-based support vector regression (WSVR)] were used for daily rainfall-runoff modelling by using three gauging stations, namely Çaydere Eğirdir Göl Giriş, Kargı Ç. Türkler and Naras D. Şişeler, in semi-arid and humid areas of Antalya basin, Turkey. The Nash Sutcliffe efficiency (NSE), index of agreement (d) and root mean square error (RMSE) were used to evaluate the model performance. Although conceptual and data-driven models yielded a good performance, data-driven models could be more helpful, especially in semi-arid and small basins, challenging for conceptual models due to nonlinearity and complexity. The best runoff forecasting performance improvement was observed in Çaydere Eğirdir Göl Giriş with the WGANN (NSE=0.96, d=0.99, RMSE=0.5 mm/d), WSVR (NSE=0.95, d=0.99, RMSE=0.6 mm/d) against the GR4J (NSE=0.53, d=0.79, RMSE=1.8 mm/d) and the GR6J (NSE=0.49, d=0.78, RMSE=1.8 mm/d). It was also found that the GR4J and GR6J yielded a similar performance. Data denoising via wavelet transformation and input selection had a significant role in developing performance for the data-driven models. Data-driven models yielded better results for the forecasting of extreme flows. In this regard, using and integrating the useful parts of the conceptual and data-driven models could be more favourable.
Czasopismo
Rocznik
Strony
897--915
Opis fizyczny
Bibliogr. 75 poz.
Twórcy
autor
  • Department of Civil Engineering, Ondokuz Mayıs University, Samsun, Turkey
  • Department of Civil Engineering, Ondokuz Mayıs University, Samsun, Turkey
Bibliografia
  • 1. Abdollahi S, Raeisi J, Khalilianpour M, Ahmadi F, Kisi O (2017) Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques. Water Res Manag 31(15):4855–4874. https://doi.org/10.1007/s11269-017-1782-7
  • 2. Adamowski J, Chan HF (2011) A wavelet neural network conjunction model for groundwater level forecasting. J Hydrol 407(1–4):28–40. https://doi.org/10.1016/j.jhydrol.2011.06.013
  • 3. Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1–2):85–91. https://doi.org/10.1016/j.jhydrol.2010.06.033
  • 4. Anshuman A, Kunnath-Poovakka A, Eldho TI (2021) Performance evaluation of conceptual rainfall-runoff models GR4J and AWBM. ISH J Hydr Eng 27(4):365–374. https://doi.org/10.1080/09715010.2018.1556124
  • 5. Bafitlhile TM, Li Z (2019) Applicability of ε-support vector machine and artificial neural network for flood forecasting in humid, semi-humid and semi-arid basins in China. Water 11(1):85. https://doi.org/10.3390/w11010085
  • 6. Bergström S, Forsman A (1973) Development of a conceptual deterministic rainfall-runoff mode. Nord Hydrol 4:147–170
  • 7. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J 24(1):43–69. https://doi.org/10.1080/02626667909491834
  • 8. Bezak N, Brilly M, Šraj M (2014) Comparison between the peaks-over-threshold method and the annual maximum method for flood frequency analysis. Hydrol Sci J 59(5):959–977. https://doi.org/10.1080/02626667.2013.831174
  • 9. Boughton W (2004) The Australian water balance model. Environ Model Soft 19(10):943–956. https://doi.org/10.1016/j.envsoft.2003.10.007
  • 10. Burnash RJ, Ferral RL, McGuire RA (1973) A generalised streamflow simulation system: conceptual modeling for digital computers. US Department of Commerce, National Weather Service, and State of California, Department of Water Resources, London
  • 11. Chiroma H, Abdulkareem S, Abubakar A, Zeki A, Gital AYU, Usman MJ (2013) Correlation study of genetic algorithm operators: crossover and mutation probabilities. In: Proceedings of the International Symposium on Mathematical Sciences and Computing Research 6–7
  • 12. Coron L, Thirel G, Delaigue O, Perrin C, Andréassian V (2017) The suite of lumped GR hydrological models in an R package. Environ Mod Soft 94:166–171. https://doi.org/10.1016/j.envsoft.2017.05.002
  • 13. Coron L, Delaigue O, Thirel G, Dorchies D, Perrin C, Michel C (2021) airGR: suite of GR hydrological models for precipitation-runoff modelling. R package version 1.6.12. https://doi.org/10.15454/EX11NA. https://CRAN.R-project.org/package=airGR. Accessed 20 July 2021
  • 14. Daubechies I (1990) The wavelet transform, time-frequency localisation and signal analysis. IEEE Trans Inf Th 36(5):961–1005. https://doi.org/10.1515/9781400827268.442
  • 15. Dehghani R, Poudeh HT, Younesi H, Shahinejad B (2020) Daily streamflow prediction using support vector machine-artificial flora (SVM-AF) hybrid model. Acta Geophys 68(6):1763–1778. https://doi.org/10.1007/s11600-020-00472-7
  • 16. Dierauer JR, Whitfield PH, Allen DM (2017) Assessing the suitability of hydrometric data for trend analysis: the ’FlowScreen’package for R. Can Wat Res J 42(3):269–275. https://doi.org/10.1080/07011784.2017.1290553
  • 17. Dutta P, Sarma AK (2021) Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra basin. J Water Clim Change 12(1):152–165. https://doi.org/10.2166/wcc.2020.186
  • 18. Edijatno NNDO, Yang X, Makhlouf Z, Michel C (1999) GR3J: a daily watershed model with three free parameters. Hydrol Sci J 44(2):263–277. https://doi.org/10.1080/02626669909492221
  • 19. Elayouty A, Scott M, Miller C, Waldron S, Franco-Villoria M (2016) Challenges in modeling detailed and complex environmental data sets: a case study modeling the excess partial pressure of fluvial CO2. Envir Ecol Stat 23(1):65–87. https://doi.org/10.1007/s10651-015-0329-4
  • 20. Enemark T, Peeters LJ, Mallants D, Batelaan O (2019) Hydrogeological conceptual model building and testing: a review. J Hydrol 569:310–329. https://doi.org/10.1016/j.jhydrol.2018.12.007
  • 21. Feldman AD (2000) Hydrologic modeling system HEC-HMS: technical reference manual. US Army Corps of Engineers Center, US Army Corps of Engineers, Washington
  • 22. Flores N, Rodríguez R, Yépez S, Osores V, Rau P, Rivera D, Balocchi F (2021) Comparison of three daily rainfall-runoff hydrological models using four evapotranspiration models in four small forested watersheds with different land cover in south-central Chile. Water 13(22):3191. https://doi.org/10.3390/w13223191
  • 23. Gustard A, Demuth S (2009) (eds) Manual on low-flow estimation and prediction. Operational hydrology report, No. 50 WMO-No. 1029, World Meteorological Organization, Geneva, Switzerland, p 136
  • 24. Hassanat A, Almohammadi K, Alkafaween E, Abunawas E, Hammouri A, Prasath VB (2019) Choosing mutation and crossover ratios for genetic algorithms—a review with a new dynamic approach. Information 10(12):390. https://doi.org/10.3390/info10120390
  • 25. Jayathilake DI, Smith T (2021) Assessing the impact of PET estimation methods on hydrologic model performance. Hydro Res 52(2):373–388. https://doi.org/10.2166/nh.2020.066
  • 26. Jimeno-Sáez P, Senent-Aparicio J, Pérez-Sánchez J, Pulido-Velazquez D (2018) A comparison of SWAT and ANN models for daily runoff simulation in different climatic zones of peninsular Spain. Water 10(2):192. https://doi.org/10.3390/w10020192
  • 27. Johnston R, Smakhtin V (2014) Hydrological modeling of large river basins: how much is enough? Water Res Manag 28(10):2695–2730. https://doi.org/10.1007/s11269-014-0637-8
  • 28. Jun W, Lingyu T, Yuyan L, Peng G (2017) A weighted EMD-based prediction model based on TOPSIS and feed forward neural network for noised time series. Knowledge-Based Sys 132:167–178. https://doi.org/10.1016/j.knosys.2017.06.022
  • 29. Kalin L, Isik S, Schoonover JE, Lockaby BG (2010) Predicting water quality in unmonitored watersheds using artificial neural networks. J Envir Qual 39(4):1429–1440. https://doi.org/10.2134/jeq2009.0441
  • 30. Khaledian MR, Isazadeh M, Biazar SM, Pham QB (2020) Simulating Caspian Sea surface water level by artificial neural network and support vector machine models. Acta Geophys. https://doi.org/10.1007/s11600-020-00419-y
  • 31. Kisi O, Shiri J (2011) Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. Water Res Manag 25(13):3135–3152. https://doi.org/10.1007/s11269-011-9849-3
  • 32. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31(1):13–24. https://doi.org/10.1080/02626668609491024
  • 33. Lang M, Ouarda TB, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol 225(3–4):103–117. https://doi.org/10.1016/S0022-1694(99)00167-5
  • 34. Lavtar K, Bezak N, Šraj M (2020) Rainfall-runoff modeling of the nested non-homogeneous Sava River sub-catchments in Slovenia. Water 12(1):128. https://doi.org/10.3390/w12010128
  • 35. Le Moine N (2008) Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performance et du réalisme des modéles pluie-débit?” Ph.D thesis. Université Pierre et Marie Curie (Paris), Cemagref (Antony), 324 pp
  • 36. Leavesley GH, Lichty RW, Troutman BM, Saindon LG (1983) Precipitation-runoff modeling system: user’s manual. Water Resour Investig Rep 83(4238):207
  • 37. Lees T, Buechel M, Anderson B, Slater L, Reece S, Coxon G, Dadson SJ (2021) Benchmarking data-driven rainfall–runoff models in Great Britain: a comparison of long short-term memory (LSTM)-based models with four lumped conceptual models. Hydro Earth Sys Sci 25(10):5517–5534. https://doi.org/10.5194/hess-25-5517-2021,2021
  • 38. Liang X (1994) A two-layer variable infiltration capacity land surface representation for general circulation models (Doctoral dissertation, University of Washington).
  • 39. Linh NTT, Ruigar H, Golian S, Bawoke GT, Gupta V, Rahman KU, Pham QB (2021) Flood prediction based on climatic signals using wavelet neural network. Acta Geophys 69(4):1413–1426. https://doi.org/10.1007/s11600-021-00620-7
  • 40. Lu X, Wang X, Zhang L, Zhang T, Yang C, Song X, Yang Q (2018) Improving forecasting accuracy of river flow using gene expression programming based on wavelet decomposition and denoising. Hydrol Res 49(3):711–723. https://doi.org/10.2166/nh.2017.115
  • 41. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11(7):674–693. https://doi.org/10.1109/34.192463
  • 42. Merz R, Parajka J, Blöschl G (2009) Scale effects in conceptual hydrological modeling. Water Resour Res. https://doi.org/10.1029/2009WR007872
  • 43. Michel C (1991) Hydrologie appliquée aux petits bassins ruraux, Hydrology handbook (in French). Cemagref, Antony, France
  • 44. Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Tran ASABE 50(3):885–900. https://doi.org/10.13031/2013.23153
  • 45. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10(3):282–290. https://doi.org/10.1016/0022-1694(70)90255-6
  • 46. Nicolle P, Pushpalatha R, Perrin C, François D, Thiéry D, Mathevet T, Morice E (2014) Benchmarking hydrological models for low-flow simulation and forecasting on French catchments. Hydro Earth Sys Sci 18(8):2829–2857. https://doi.org/10.5194/hess-18-2829-2014
  • 47. Nourani V, Komasi M, Mano A (2009) A multivariate ANN-wavelet approach for rainfall–runoff modeling. Water Res Manag 23(14):2877–2894. https://doi.org/10.1007/s11269-009-9414-5
  • 48. Nourani V, Baghanam AH, Adamowski J, Gebremichael M (2013) Using self-organising maps and wavelet transforms for space–time preprocessing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243. https://doi.org/10.1016/j.jhydrol.2012.10.054
  • 49. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  • 50. Olgen MK (2010) Türkiye’de yıllık ve mevsimsel yağış değişkenliğinin alansal dağılımı. Ege Coğ Der 19(1):85–95
  • 51. Oudin L, Hervieu F, Michel C, Perrin C, Andréassian V, Anctil F, Loumagne C (2005) Which potential evapotranspiration input for a lumped rainfall–runoff model? Part 2—towards a simple and efficient potential evapotranspiration model for rainfall–runoff modelling. J Hydrol 303(1–4):290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026
  • 52. Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279(1–4):275–289. https://doi.org/10.1016/S0022-1694(03)00225-7
  • 53. Pfaff B, McNeil A, Stephenson A (2011) Evir: extreme values in R. R package version 1.7–3. http://CRAN.R-project.org/package=evir. Accessed 25 July 2021
  • 54. Poncelet C, Merz R, Merz B, Parajka J, Oudin L, Andréassian V, Perrin C (2017) Process-based interpretation of conceptual hydrological model performance using a multinational catchment set. Water Resour Res 53(8):7247–7268. https://doi.org/10.1002/2016WR019991
  • 55. Pushpalatha R, Perrin C, Le Moine N, Mathevet T, Andréassian V (2011) A downward structural sensitivity analysis of hydrological models to improve low-flow simulation. J Hydrol 411(1–2):66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034
  • 56. Rathinasamy M, Adamowski J, Khosa R (2013) Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method. J Hydrol 507:186–200. https://doi.org/10.1016/j.jhydrol.2013.09.025
  • 57. Rauf AU, Ghumman AR (2018) Impact assessment of rainfall-runoff simulations on the flow duration curve of the Upper Indus River—a comparison of data-driven and hydrologic models. Water 10(7):876. https://doi.org/10.3390/w10070876
  • 58. Republic of Turkey Ministry of Agriculture and Forestry (2016). Flood management plans. Available from:https://www.tarimorman.gov.tr/SYGM/Sayfalar/Detay.aspx?SayfaId=53 (Accessed 01 May 2020)
  • 59. Reshma T, Reddy KV, Pratap D, Agilan V (2018) Parameters optimisation using Fuzzy rule based multi-objective genetic algorithm for an event based rainfall-runoff model. Water Res Manag 32(4):1501–1516. https://doi.org/10.1007/s11269-017-1884-2
  • 60. Sabanci S (2012) Alanya ve Manavgat’ın iklim özellikleri (Climate features of Alanya and Manavgat). İstanbul Üniversitesi Yüksek lisans tezi (Istanbul University, Master thesis) p. 62–70
  • 61. Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Res Manag 28(2):301–317. https://doi.org/10.1007/s11269-013-0446-5
  • 62. Sang YF (2012) A practical guide to discrete wavelet decomposition of hydrologic time series. Water Res Manag 26(11):3345–3365. https://doi.org/10.1007/s11269-012-0075-4
  • 63. Schölkopf B, Smola A (2002) Support vector machines and kernel algorithms. Retrieved from: http://alex.smola.org/papers/2002/SchSmo02b.pdf (Accessed 05 March 2020)
  • 64. Sedki A, Ouazar D, El Mazoudi E (2009) Evolving neural network using real coded genetic algorithm for daily rainfall–runoff forecasting. Ex Sys App 36(3):4523–4527. https://doi.org/10.1016/j.eswa.2008.05.024
  • 65. Sezen C, Bezak N, Bai Y, Šraj M (2019) Hydrological modelling of karst catchment using lumped conceptual and data mining models. J Hydrol 576:98–110. https://doi.org/10.1016/j.jhydrol.2019.06.036
  • 66. Smits GF, Jordaan EM (2002) Improved SVM regression using mixtures of kernels. In Proc. of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No. 02CH37290) (Vol. 3, pp. 2785–2790). IEEE
  • 67. Tagil S, Alevkayali C (2014) Eğirdir Gölüne Kuzeyden Dökülen Akarsularda Akım Trendi ve Yağış İlişkisi. Balıkesir Üniv Sos Bil Enst Der 17(32):211–229. https://doi.org/10.31795/baunsobed.645483
  • 68. Van Esse WR, Perrin C, Booij MJ, Augustijn DC, Fenicia F, Kavetski D, Lobligeois F (2013) The influence of conceptual model structure on model performance: a comparative study for 237 French catchments. Hydro Earth Sys Sci 17(10):4227–4239. https://doi.org/10.5194/hess-17-4227-2013
  • 69. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York
  • 70. Vapnik VN, Chervonenkis AY (1964a) Oб oднoм клacce aлгopитмoв oбyчeния pacпoзнaвaнию oбpaзoв (On a class of algorithms of learning pattern recognition). Avtomatika i Telemekhanika 25(6):937–945
  • 71. Vapnik VN, Chervonenkis AY (1964b) Oб oднoм клacce пepceптpoнoв (On a class of perceptrons). Avtomatika i Telemekhanika 25(1):112:120
  • 72. Wang X, Zhang F, Kung HT, Johnson VC, Latif A (2020) Extracting soil salinisation information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model. Int J Rem Sens 41(3):953–973. https://doi.org/10.1080/01431161.2019.1654142
  • 73. Willmott CJ (1981) On the validation of models. Phys Geog 2(2):184–194. https://doi.org/10.1080/02723646.1981.10642213
  • 74. Zhang Z, Zhang Q, Singh VP, Shi P (2018) River flow modelling: comparison of performance and evaluation of uncertainty using data-driven models and conceptual hydrological model. Stoc Envir Res Risk Ass 32(9):2667–2682. https://doi.org/10.1007/s00477-018-1536-y
  • 75. Zhou T, Wang F, Yang Z (2017) Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. Water 9(10):781. https://doi.org/10.3390/w9100781
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3ca095a-d73d-48b2-91d3-122f87f43737
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.