Produkcja energii w wybranych zintegrowanych układach gazowo-parowych IGCC zasilanych gazem z procesów zgazowania węgla

Agnieszka LEŚNIAK, Marek BIENIECKI* – Główny Instytut Górnictwa, Katowice

Tablica I

Prosimy cytować jako: CHEMIK 2014, **68**, 12, 1074–1085

Koncepcja zintegrowanego układu gazowo-parowego opiera się na wykorzystaniu, jako źródła energii, gazu syntezowego (syngazu)uzyskanego w wyniku procesu zgazowania paliwa (np. węgla) w reaktorze ciśnieniowym. Przed skierowaniem wytworzonego syngazu do komory spalania turbiny gazowej zostaje on oczyszczony. Zanieczyszczenia są więc usuwane przed procesem spalania gazu, a nie – jak w przypadku tradycyjnych technologii węglowych – ze spalin. Część energii zawartej w spalinach na wylocie z turbiny gazowej jest wykorzystywana do produkcji pary w kotle odzyskowym, która następnie oddaje swoją energię w turbinie parowej.

Technologia IGCC zaliczana jest do czystych technologii węglowych. Układy gazowo-parowe zintegrowane ze zgazowaniem paliwa pozwalają osiągnąć znacznie wyższą sprawność (45–55%), w porównaniu do konwencjonalnych elektrowni węglowych (KEW) (ok. 35%). Dodatkowo układy te są bardziej ekologiczne, charakteryzują się bowiem mniejszym (o ok. połowę) zużyciem wody w porównaniu do KEW, oraz mniejszą emisją NO_x, SO₂, CO₂, spełniającą wymagania UE. Niska emisja zanieczyszczeń wynika właśnie z usunięcia tych zanieczyszczeń z gazu syntezowego przed skierowaniem go do komory spalania turbiny gazowej.

W latach 1994-1998 zostało uruchomionych 5 demonstracyjnych bloków IGCC: Demkolec (Buggenum, Holandia), Wabash River (Indiana, USA), Tampa Electric (Floryda, USA), Puertollano (Hiszpania), Pinon Pine (Nevada, USA). W Tablicy I zestawiono podstawowe dane charakteryzujące instalację zgazowania dla w/w układów IGCC [1]. Zastosowano w nich nowoczesne reaktory oparte na następujących technologiach generacji gazu: firmy Stell (Buggenum), reaktora dyspersyjnego Texaco (Tampa Electric), reaktora dyspersyjnego Prenflo (Puertollano), reaktora dyspersyjnego Destec (Wabash River) oraz reaktora KRW (Pinon Pine). Większość z tych układów IGCC, po okresie demonstracyjnym, zaczęła być eksploatowana komercyjnie (Buggenum, Tampa Electroc, Wabash River, Puertollano); tylko projekt Pinon Pine zakończył się niepowodzeniem już na etapie demonstracyjnym. W artykule przedstawiono również trzy komercyjne instalacje IGCC: dwie wybudowane w Japonii oraz jedna czeska, wykorzystująca węgiel brunatny

Puertollano IGCC, Hiszpania

Instalacja IGCC Puertollano położona w środkowej części Hiszpanii, rozpoczęła pracę w 1992 r. jako instalacja demonstracyjna w projekcie celowym Komisji Europejskiej finansowanym w ramach Programu Thermie; Działalność komercyjną rozpoczęła w marcu 1998 r. Dane techniczne instalacji IGCC Puertollano:

- paliwo: węgiel + koks naftowy (w proporcji 50:50)
- zużycie węgla: 2600 t/dobę
- dobowa produkcja gazu syntezowego: 4,0 x 10⁶ nm³
- sprawność netto układu 43%
- reaktor zgazowania Prenflo
- czystość tlenu doprowadzonego do generatora: 85%
- ciśnienie w generatorze 2,8 MPa
- temperatura w generatorze 1400–1540°C
- wartość opałowa gazu syntezowego 4,3 MJ/kg
- temperatura spalin na wylocie z turbiny gazowej 1260°C
- moc potrzeb własnych 35 MW
- turbina gazowa Siemens V 94.3 z możliwością spalania syngazu oraz gazu ziemnego
- kocioł trójciśnieniowy z przegrzewem międzystopniowym
- \- zgazowanie tlenowe
- tlenownia ASU jest całkowicie zintegrowana z instalacją IGCC.

Tablica 2

Skład gazu syntezowego wykorzystywanego w instalacji IGCC Puertollano [3]

Składnik gazu	Udział objętościowy, %
H ₂	10,67
со	29,24
H₂O	4,18
N ₂	53,08
Ar	0,62
CO2	١,89
CH₄	0,07
O ₂	0,25

Porównanie układów zgazowania węgla stosowanych w systemach IGCC [2]

Obiekt, kraj	Puertollano Hiszpania	Puertollano Hiszpania Holandia		Pinon Pine USA	
Generator gazu	Prenflo I – stopniowy przepływowy	Prenflo I – Shell I – Texaco I - stopniowy stopniowy stopniowy stopniowy przepływowy przepływowy przepływowy przepływowy		KRW fluidalny ciśnieniowy	
Węgiel	Węgiel naftowy	Draylon, Australia	Pittsburg nr 8	Utah	
Wartość opałowa, MI/ka	23,1	26	30	26	
Popiáł %	4, I	12,2	7,9	10	
Wilgoć, %	20,9	9,5	4,75	10	
Siarka, %	3,2	١,2	2,45	0,45	
Maksymalne zużycie węgla, t/d	Maksymalne iżycie węgla, t/d 2600		2000 2200		
Sposób doprowa- dzenia węgla	suchy pył węglowy	suchy pył węglowy	zawiesina wod- no-węglowa	suchy miał węglowy	
Czynnik nośny	azot	azot	woda 40%	gorące powie- trze	
Czynnik zgazowujący Doprowadzanie powietrza do tlenowni		tlen 95% + para wodna; kompresor wspólny z turbi- ną gazową	tlen 95%; wydzielony kompresor	Powietrze; kompresor wspólny z turbi- ną gazową	
Temperatura i ciśnienie zgazo- wania	Temperatura ciśnienie zgazo- wania max. 1600°C n 2,5 MPa		max. 1480°C 3–4 MPa	980°C 2 MPa	
Sposób schładza- nia oraz tempera- tura za chłodnicą gazu surowego	sób schładza- raz tempera- za chłodnicą chłodnica u surowego		chłodnica opro- mieniowana 760°C	kocioł odzyskni- cowy	

Autor do korespondencji:

Mgr. inż. Marek BIENIECKI, e-mail: m.bieniecki@gig.eu

Rys. I. Schemat instalacji Puertollano IGCC [8]

Rys. 2. Schemat instalacji Buggenum IGCC [9]

Buggenum IGCC, Holandia

Instalacja Buggenum, jako jedna z pierwszych demonstracyjnych instalacji IGCC na świecie, została oddana do użytku w 1994 r., a od roku 1998 r. funkcjonowała jako instalacja komercyjna. Dane techniczne instalacji IGCC Buggenum:

- zużycie węgla 2000 t/dobę
- dobowa produkcja gazu syntezowego 4,0 x 106 Nm³
- sprawność netto układu 43%
- reaktor zgazowania Stell
- czystość tlenu doprowadzonego do generatora 95%
- ciśnienie w generatorze 2,8 MPa
- temperatura w generatorze 1400–1540°C
- wartość opałowa gazu syntezowego 4,3 MJ/kg

- temperatura spalin na wylocie z turbiny gazowej 1100°C
- dyspozycyjność 75% (po siedmiu latach eksploatacji)
- turbina gazowa Siemens V 94.2
- kocioł dwuciśnieniowy z przegrzewem międzystopniowym
- zgazowanie tlenowe
- tlenownia ASU jest całkowicie zintegrowana z instalacją IGCC.
 Bilans energii dla rozważanego układu przedstawia się następująco [4]:
- energia zawarta w paliwie 585 MW
- moc turbiny gazowej 156 MW
- moc turbiny parowej 284 MW
- moc potrzeb własnych 31 MW
- moc układu netto 253 MW

CHEMIK nr 12/2014 • tom 68

Tablica 3	3
Skład gazu syntezowego wykorzystywanego w instalacji IGCC	
Buggenum [3]	

Składnik gazu	Udział objętościowy, %
H ₂	12,3
со	24,8
H,O	19,1
N ₂	42
Ar	0,6
CO,	0,8
CH	0
O ₂	0,4

Zalety układu IGCC Buggenum:

- niska emisja NO_x < 10 ppm
- skuteczność usuwania siarki powyżej 99%
- praktycznie zerowa emisja popiołów, chlorków i lotnych metali ciężkich
- brak zrzutu wody odpadowej, jest ona ponownie wykorzystywana w układzie

Tampa Electric IGCC, Floryda, USA

Instalacja Tampa Electric IGCC na Florydzie, USA, została wybudowana i obsługiwana przez Tampa Electric Company. Instalacja była częściowo finansowana w ramach programu Czystych Technologii Węglowych DOE. Instalacja Tampa Electric składa się z trzech jednostek: z instalacji IGCC o mocy 250 MW oraz dwóch prostych obiegów turbiny gazowej o mocy 180 MW. Instalację uruchomiono w 1996 r. Dane techniczne instalacji Tampa Electric IGCC:

- turbina gazowa GE 7FA (GE MS7001FA) przystosowana do spalania syngazu i paliw destylowanych
- instalacja IGCC produkuje 200 ton 98% kwasu siarkowego
- zgazowanie tlenowe (czystość tlenu 95%)
- tlenownia ASU nie zintegrowana z instalacją IGCC
- sposób doprowadzenia węgla mieszanka wodno-węglowa
- zużycie węgla 2200 t/dobę
- stopień konwersji węgla 95%
- temperatura w generatorze 1315–1430°C
- temperatura na wylocie z turbiny gazowej 570°C
- moc instalacji IGCC 192 MW (syngaz), 160 MW (paliwa destylowane).

Tablica 4

Skład gazu syntezowego wykorzystywanego w instalacji IGCC Tampa Electric [5]

Składnik gazu	Udział objętościowy, %					
	Węgiel	Koks naftowy				
H ₂	37,95	34,04				
со	44,06	48,29				
N ₂ + inne	2,38	3,08				
Ar	0,88	I				
CO2	14,73	13,61				

Rys. 3. Schemat instalacji Tampa Electric IGCC [11]

Wabash River IGCC, Indiana, USA

Instalacja Wabash River IGCC została wybrana w 1991 r. przez DOE jako projekt demonstracyjny Czystych Technologii Węglowych i miała na celu zwiększenie wykorzystania węgla jako głównego źródła energii. Prace nad instalacją rozpoczęto w 1993 r. i trwały do 1995 r. Okres demonstracyjny trwał do grudnia 1999 r. Instalacja Wabash River znajdująca się w stanie Indiana USA, ma moc elektryczną 262 MW, a sprawność instalacji wynosi 40%. Instalacja została zaprojektowana, specjalnie, aby wykorzystać lokalne zasoby węgla (przy spełnieniu warunku zawartości siarki <5,9%), niemniej jednak głównym paliwem był węgiel Illinois Basin oraz częściowo koks naftowy. Dane techniczne instalacji Wabash River IGCC:

CHEMIK nr 12/2014 • tom 68

- gazogenerator typu E-gaz/Destec
- turbina gazowa General Electric MS 7001 FA (przy rozruchu stosowany jest olej)
- turbina parowa firmy Westinghouse
- generator pary HRSG (Heat Recovery Steam Generators) Foster Wheeler
- zgazowanie tlenowe (czystość tlenu 95%)
- tlenownia ASU nie zintegrowana z instalacją IGCC
- – sposób doprowadzenia węgla mieszanka wodno-węglowa
- temperatura w generatorze 1038–1370°C
- – temperatura spalin na wylocie z turbiny gazowej 1222°C.

Tablica 5 Skład gazu syntezowego wykorzystywanego w instalacji IGCC Wabash River [5]

Składnik gazu	Udział objętościowy, %				
	Węgiel	Koks naftowy			
H ₂	34,4	33,2			
со	45,3	48,6			
Ν,	١,9	1,9			
Ar	0,6	0,6			
CO2	15,8	15,4			
CH₄	١,٩	0,5			

Rys.4. Schemat instalacji Wabash River IGCC [10]

Nakoso IGCC, Japonia

Instalacja Nakoso IGCC o mocy 250 MW położona w Japonii powstała jako projekt demonstracyjny, którego zadaniem było przeprowadzenie serii badań rozpoczętych w 2007 r. W planie jest budowa komercyjnej instalacji IGCC o podwojonej mocy w stosunku do projektu demonstracyjnego, która ma rozpocząć pracę najwcześniej w 2014 r.

W instalacji Nakoso IGCC proces zgazowania przebiega przy użyciu powietrza jako utleniacza. Niemniej jednak instalacja posiada moduł ASU, w której produkowany azot służy do transportu mieszanki palnej do gazogeneratora. Moduł ten jest o 75–80% mniejszy w stosunku do typowych tlenowni ASU, wykorzystywanych przy zgazowaniu tlenowym (tlenownia taka zużywa ok. 10% mocy instalacji IGCC). Dane techniczne instalacji Nakoso IGCC:

- turbina gazowa Mitsubishi M701DA (przy rozruchu stosowana jest nafta)
- zgazowanie powietrzem wzbogaconym w tlen
- stosunek powietrze/węgiel w gazogeneratorze wynosi 72
- paliwo: sproszkowany węgiel
- żużel zawiera mniej niż 0,2% niespalonego węgla i jest praktycznie wolny od pierwiastków śladowych (może być wykorzystany przy produkcji materiałów brukowych i betonu kruszynowego)

- temperatura na wlocie do turbiny gazowej: 1200°C
- moc instalacji IGCC: 142 MW turbina gazowa, 110 MW turbina parowa
- sprawność netto instalacji 42%
- przy użyciu TG klasy F (M701F) moc instalacji IGCC wynosiłaby 450 MW przy sprawności 45–46%
- przy użyciu TG klasy G dla komercyjnej instalacji IGCC szacuje się moc 650 MW przy sprawności 48–50%.

Tablica	6

Skład gazu syntezowego wykorzystywanego w instalacji IGCC Nakoso [5]

Składnik gazu	Udział objętościowy, %
H ₂	10,5
со	30,5
N_2 + others	55,5
CH4	0,07
CO2	2,8

Rys. 5. Schemat instalacji Nakoso IGCC [12]

Negishi IGCC, Japonia

Pierwsza komercyjna instalacja IGCC w Japonii oddana do użytku w 2003 r., w której paliwem jest olej resztkowy.

- Dane techniczne instalacji Negishi IGCC:
- turbina gazowa Mitsubishi 701F
- zgazowanie tlenowe
- instalacja ASU nie jest połączona z TG po stronie powietrza
- paliwo: asfalt
- stopień konwersji węgla 95%
- temperatura w generatorze: 1300°C
- ciśnienie w generatorze: 70 bar
- współczynnik odzysku siarki: 99,8%
- moc instalacji IGCC: 342 MW.

Rys. 6. Schemat instalacji Negishi IGCC [13]

Vresova IGCC, Czechy

Instalacja Vresova IGCC znajduje się w Czechach. Dane techniczne instalacji Vresova IGCC:

- turbina gazowa Frame 9E (9171E) (podstawowe paliwo syngaz, rezerwowe – gaz ziemny)
- gazogenerator Lurgi ze złożem stałym + gazogenerator firmy Siemens (wykorzystuje smołę wyprodukowaną w gazogeneratorach Lurgi)
- zgazowanie tlenowe + para
- paliwo: węgiel brunatny
- ciśnienie w generatorze: 28 bar
- moc instalacji IGCC: 400 MW brutto
- sprawność instalacji IGCC: 50,5% (bez ciepła grzewczego)

Podsumowanie

Przedstawione w Tablicy 7 dane techniczne układów gazowo-parowych IGCC zasilanych gazem z procesów zgazowania węgli wykazują stosunkowo wysokie sprawności wytwarzania energii elektrycznej (42 – 50%) w zależności od rodzaju zgazowywanego paliwa i mocy zastosowanej turbiny gazowej. Biorąc pod uwagę stopień odsiarczenia spalin oraz wysokie sprawności termiczne, a także wynikający ze składu gazu procesowego wynikowy skład spalin, umożliwiający dość łatwe ewentualne wychwycenie dwutlenku węgla, przedstawione instalacje mają duży potencjał zastosowania. Bardzo wysoka sprawność instalacji IGCC z instalacjami zgazowania węgli kamiennych i węgla brunatnego wytycza kierunek dla budowy podobnych instalacji w Polsce, i zastępowania wyeksploatowanych już elektrowni zawodowych.

Tablica 7

Zestawienie charakterystycznych danych instalacji IGCC [5]

Wyszczegól- nienie	Bugge- num	Puertol- lano	Wabash River	Polk Power	Nakoso	Negishi	Vresova
Właściciel	NUON	ELCO- GAS	Cinergy/ Conocno Philips	Tampa Electric	Clean Coal Power R&D Co.	Nippon Petroleum Refining Co.	Soko- lovská Uhelná
Lokalizacja	Holandia	Hiszpania	Indiana, U.S.A	Floryda, U.S.A	Japonia	Japonia	Czechy
Gazogene- rator	Shell	Prenflo	Conoco Philips	GE Energy- Chevron Texaco	Pilot Plant	GE Energy- Chevron Texaco	Lurgi- &FE
Turbina gazowa	Siemens V94.2	Siemens V94.2	GE MS7001FA	GE MS7001FA	Mitsubishi M701DA	Mitsubishi M701F	GE 9E
Paliwo	Węgiel	Węgiel/ koks naftowy	Węgiel/ koks naftowy	Węgiel/koks naftowy	Sprosz- kowany węgiel	Pozo- stałości rafineryjne (asphalt)	Węgiel brunatny
Moc MW	253	300	262	250	250	342	400
Sprawność netto (Wd), %	43,2	45	-	-	42,5	-	50,5
Sprawność netto (Qsp), %	41,4	41,5	39,7	37,5	40,5	46	-
Moc turbiny gazowej MW	168	200	171	171	130	270	-
Temperatura przed wlotem do turbiny gazowej, °C	1100	1120	-	-	1200	1350	-
Odzysk siarki, %	99	99	99	98	-	99,8	-

Tablica 8

Skład gazu surowego z różnych gazogeneratorów [6]

Rodzaj toch-	Skład gazu surowego, % vol (suchy)								
nologii	со	H ₂	CH₄	N ₂	CO ₂	H ₂ S+COS	NH ₃	CnHm	H ₂ /CO (obj.)
Lurgi/BG – ciekłe odpro- wadzenie żużla Rodzaj węgla: Illomois 6	54,96	31,54	4,54	3,35	3,46	1,31	0,36	0,48	0,574
Lurgi/ BC – suche odprowadze- nie popiołu	15,18	42,15	8,64	0,68	30,89	1,31	0,36	0,79	2,78
WIKLER/HTW Rodzaj węgla: niemiecki wę- giel brunatny	40,3	31,8	3,7	0,9 (N ₂ +Ar)	23,3 (CO ₂ +H ₂ S)	COS 20 mg/m³	< 5 mg/ m ³	< 20 mg/ m ³	0,789
Stell (podobnie PRENFLO) Illinois 6	61,6	30,6	ślad	4,8 (N ₂ +Ar)	١,7	١,3	-	-	0,497
TEXACO, Illinois 6	49,28	35,82	0,36	1,32 (N ₂ +Ar)	12,26	0,96	-	-	0,729
DOW (węgiel kamienny, C-74,49,m.a.f, udział ma- sowy)	38,46	41,35	0,11	I,48 (N ₂ +Ar)	18,46	0,14	-	-	1,075
DOW (węgiel brunatny, C-73,m.a.f, udział ma- sowy)	33,74	38,82	0,04	1,82 (N ₂ +Ar)	25,28	0,2	-	-	1,151

Tablica 9

technika •rynek

Układy gazowo-parowe zintegrowane ze zgazowaniem paliwa (będące w eksploatacji, budowie i projektowaniu) [7]

Nazwa instalacji	Rok uruchomie- nia (podjęcia prac)	Reaktor zgazo- wania	Paliwo	Moc (MW)	Sprawność netto (do Wd lub Qsp)	Status
DEMCOLEC	1000	0.1511		050	(2.2	
Buggenum/Holandia	1993	SHELL	węgiel	253	43,2	w eksploatacji
ELCOGAS	1007		węgiel +	200	15.0	
Puertollano/Hiszpania	1997	PRENFLO	koks naftowy	300	45,0	w eksploatacji
PSI, Wabash River						
Indiana/USA	1995	DESTEC	węgiel	265	39,2 (Qsp)	w eksploatacji
Tampa Electric, Polsk City, Florida/USA	1996	TEXACO	węgiel	250	38,8	w eksploatacji
Sierra Pacific Pinon Pine,	100/			100	42	
Nevada/USA	1996	KKVV	węgiei	100	42	w ekspioatacji
RWE Kobra Hurth,	2000		węgiel	200	45.47	
Niemcy	2000	HIW	brunatny	300	45 47	projekt
SARLUX,	1000	TEXACO		446	Dam damush	hudauis
Sardynia/Włochy	1777	TEXACO	smofa	MW+H ₂ +Para	Bez danych	w budowie
API Energa, Falconara,	1000	TEXACO	odpady	224 Para	40 E	whydewie
Włochy	1 7 7 7	TEXACO	paraf.	237771 ala	40,5	w budowie
STEAG Kellerman	1969	BG/I	wagial	170	317	zakończona eksplo-
Lunen/Niemcy	1707	BO/L	węgiei	170	51,7	atacja
Cool Water/USA	1986	TEXACO	węgiel	93	31,2 (Qsp)	zakończona eksplo- atacja
LGTI Plaquemine Louisiana/USA	1987	DOW	węgiel	160	36,0 (Qsp)	zakończona eksplo- atacja
CWL&P Springfield Illinois/USA	1996	CE	węgiel	60 (Retroift)	38,0 (Qsp)	projekt
Camden New Jersey/USA	1999	BG/L	węgiel	480 (retrofit)	Bez danych	project
Japonia	1997	Mitsubishi	węgiel	370	>45	projekt
TVA Tennessee/USA	1998	TEXACO	węgiel	350 MW + nawóz	Brak danych	projekt
Tamco Toms Creek Virginia/USA	1999	U-gas	węgiel	70	42,5	projekt
ISAB SpA Sycylia, Włochy	1997	TEXACO	asphalt	500 MW + H ₂ +Para	Bez danych	w budowie
Delaware City Dekaware/USA	1998	TEXACO	koks naftowy	250	Bez danych	projekt
W – wartość opałowa MI/kg						

Q_n – ciepło spalania, MJ/kg

Artykuł powstał w wyniku realizacji zadania pt.: "Opracowanie technologii zgazowania węgla dla wysokoefektywnej produkcji paliw i energii elektrycznej" finansowanego przez Narodowe Centrum Badań i Rozwoju w ramach strategicznego programu badań naukowych i prac rozwojowych pt.: "Zaawansowane technologie pozyskiwania energii"

Literatura

- Ściążko M.: Teraźniejszość i przyszłość zgazowania węgla. Rurociągi 2001, nr 01/02.
- Rakowski J.: Pierwsze doświadczenia z blokami gazowo-parowymi na gaz z węgla. Energetyka 1998, 7, 282-290.
- Kehlhofer, R.H., Warner, J., Nielsen, H., Bachman, R.: Combined Cycle Gas & Steam Turbine Power stations. 2nd Edition Pennwell Publishing, Tulsa, Oklahoma, 1999.
- de Graaf J. D.: Shell Coal Gasification Technology. Available online: http://w3.wtb.tue.nl/fileadmin/wtb/ct-pdfs/Energy_from_Biomas/Lecture_2011_gastcollege_Shall.pdf (acessed on 6 June 2012)
- State of the art IGCC power stations. Document ISV/TMC/10.002. Ansaldo Energia 2010.
- Kotowicz J.: Układy gazowo-parowe zintegrowane ze zgazowaniem węgla. Rynek Energii 2008, nr 3.
- 7. Chmielniak T.: Technologie energetyczne. WNT Warszawa, 2008.
- Méndez-Vigo I., Pisa J., Cortés J., Schellberg W., Karg J.: The Puertollano IGCC plant: Status update. EPRI/GTC Gasification Technologies Conference 1998 - San Francisco, CA, USA.
- Hannemann F., Schiffers U., Karg J., Kanaar M.: Buggenum Experience and Improved Concepts for Syngas Applications. Presentation dated 28.10.2002. V94.2.

- DOE Clean Coal Technology. The Wabash River Coal Gasification Repowering Project. An update Topical report number 20. 2001.
- Tampa Electric Polk Power Station Integrated Gasification Combined Cycle Project. Final Technical Report. Work Performed Under Cooperative Agreement DE-FC-21-91MC27363 for The US Department of Energy. Tampa Electric Company (TECO), 2002.
- Low Emission Gas Turbine Technology fot Hydrogen rich Syngas. IGCC State of the art report a part of EU-FP7 H2-IGCC Sub Project 4. Department of Mech.&Structural Eng.&Material Science. University of Stavanger. Norway, April 2010.
- 13. Nippon Oil Corporation, www.eneos.co.jp 2013.

Mgr inż. Agnieszka LEŚNIAK – absolwentka wydziału Inżynierii Środowiska i Energetyki Politechniki Śląskiej (2009) - magister inżynier inżynierii środowiska. Obecne zainteresowania naukowe koncentrują się na zagadnieniach związanych z czystymi technologiami energetycznymi. Pracownik Laboratorium Efektywnego wytwarzania i użytkowania energii w Głównym Instytucie Górnictwa w Katowicach.

*Mgr inż. Marek BIENIECKI absolwent wydziału Mechanicznego – Energetycznego Politechniki Śląskiej w Gliwicach (1989) - magister inżynier mechanik w specjalności: cieplne systemy energetyczne. Aktualne zainteresowania koncentrują się na czystych technologiach wytwarzania oraz efektywnych energetycznie technologiach użytkowania energii. Kierownik Laboratorium Efektywnego Wytwarzania i Użytkowania Energii w Głównym Instytucie Górnictwa w Katowicach

CHEMIK nr 12/2014 • tom 68