PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the effect of geometric shape on the quality of mixing: Examining the effect of length of the baffles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work is an attempt to study the behaviour of fluid in the mixing vessel with a two-bladed or four-bladed impeller. The working fluid is complex, of a shear-thinning type and the Oswald model is used to describe the fluid viscosity. The study was accomplishedby numerically solving the governing equations of momentum and continuity. These equations were solved for the following range of conditions: 50–1000 for the Reynolds number, 0–0.15 for the baffle length ratio, and the number of impeller blades 2 and 4. The simulations were done for the steady state and laminar regime. The results show that the increase in baffle length (by increasing the ratio baffle length ratio) decreases the fluid velocity in the vessel. Increasing the speed of rotation of the impeller and/or increasing the number of blades improves the mixing process. Also, the length of the baffles does not affect the consumed power.
Słowa kluczowe
Rocznik
Strony
69--85
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • University of Science and Technology of Oran Mohamed-Boudiaf, Faculty of Mechanical Engineering, BP 1505, El-Menaouer, Oran, 31000, Algeria
  • Stellenbosch University, Faculty of Military Science, Private Bag X2, Saldanha 7395, South Africa
Bibliografia
  • [1] Hadjeb A., Bouzit M., KamlaY., Ameur H.: A new geometrical model for mixing of highly viscous fluids by combiningtwo-blade and helical screw agitators. Pol. J. Chem. Technol. 19(2017), 3, 83–9l.
  • [2] Laidoudi H.: Hydrodynamic analyses of the flow patterns in stirred vessel of twobladed impeller. J. Serb. Soc. Comput. Mech. 14(2020), 2, 117–132.
  • [3] Ameur H.: Agitation of yield stress fluids in different vessel shapes. Eng. Sci. Technol. Int. J. 19(2016), 1, 189–196.
  • [4] Galindo E., Nienow A.W.: Mixing of highly viscoussimulated xanthan fermentation broths with the Lightnin A-315 impeller. Biotechnol. Prog. 8(1992), 3, 233–239.
  • [5] Galindo E., Nienow A.W.: Performance of the Scaba 6SRGT agitator in mixing of simulated xanthan gumbroths. Chem. Eng. Technol. 16(1993), 2, 102–108.
  • [6] Amanullah A., Hjorth S.A., Nienow A.W.: Cavern sizes generated in highly shear thinning viscous fluids by Scaba 3SHP1 impellers. Food Bioprod. Process. 75(1997), 4, 232–238.
  • [7] Pakzad L., Ein-Mozaffari F., Chan P.: Using computational fluid dynamics modeling to study the mixing of pseudoplastic fluids with a Scaba 6SRGT impeller. Chem. Eng. Process. 47(2008), 12, 2218–2227.
  • [8] Ameur H., Bouzit M.: Power consumption for stirring shear thinning fluids by twoblade impeller. Energy 50(2013), 326–332.
  • [9] Ameur H., Bouzit M., Ghenaim A.: Numerical studyof the performance of multistage Scaba 6SRGT impellersfor the agitation of yield stress fluids in cylindrical tanks. J. Hydrodyn. 27(2015), 3, 436–442.
  • [10] Patel D., Ein-Mozaffari F., Mehrvar M.: Improvingthe dynamic performance of continuous-flow mixing ofpseudoplastic fluids possessing yield stress using Maxblend impeller. Chem. Eng. Res. Des. 90(2012), 4, 514–523.
  • [11] Kazemzadeh A., Ein-Mozaffari F., Lohi A.: Investigation of hydrodynamic performances of coaxial mixersin agitation of yield-pseudoplasitc fluids: single and doublecentral impellers in combination with the anchor. Chem. Eng. J. 294(2016), 417–430.
  • [12] Kazemzadeh A., Ein-Mozaffari F., Lohi A.: Effect of the rheological properties on the mixing of Herschel-Bulkley fluids with coaxial mixers: applications of tomography, CFD, and response surface methodology. Can. J. Chem. Eng. 94(2016), 12, 2394–2406.
  • [13] Ammar M., Abid M.S.: Numerical investigation of turbulent flow generated in baffled stirred vessels equipped with three different turbines in one and two-stage system. Energy 36(2011), 8, 5081–5093.
  • [14] Vilard G., Verdone N.: Production of metallic iron nanoparticles in a baffled stirred tank reactor: Optimization via computational fluid dynamics simulation. Particuology 52(2020), 83–96.
  • [15] Laidoudi H., Ameur H.: Complex fluid flow in annular space under the effects of mixed convection and rotating wall of the outer enclosure. Heat Transfer 51(2022), 5, 3741–3767.
  • [16] Tacay C.D., Payunescu M.: Suspension of solid particles in spherical stirred vessels. Chem. Eng. Sci. 55(2000), 15, 2989–2993.
  • [17] Vakili M.H., Esfahany M.N.: CFD analysis of turbulence in a baffled stirred tank, a three-compartment model. Che. Eng. Sci. 64(2009), 2, 351–362.
  • [18] Foukrach M., Bouzit M., Ameur M., Kamla Y.: Influence of the vessel shape on the performance of a mechanically agitated system. Chem. Pap. 73(2019), 469–480.
  • [19] Laidoudi H., Ameur H.: Investigation of the mixed convection of power-law fluids between two horizontal concentric cylinders: Effect of various operating conditions. Therm. Sci. Eng. Prog. 20(2020), 100731.
  • [20] Ameur H.: Mixing of shear thinning fluids in cylindrical tanks: Effect of the impeller blade designand operating conditions. Int. J. Chem. React. Eng. 14(2016), 1025–1033.
  • [21] Ghotli R.A., Abdul Aziz A.R., Ibrahim S., Baroutian S., Niya A.A.: Study of various curved-blade impeller geometrieson power consumption in stirred vessel using response surface methodology. J. Taiwan Inst. Chem. Eng. 44(2013), 2, 192–201.
  • [22] Khapre A., Munshi B.: Numerical investigation of hydrodynamic behavior of shear thinning fluids in stirred tank. J. Taiwan Inst. Chem. Eng. 56 (2015), 16–27.
  • [23] Luan D., Chen Q., Zhou S.: Numerical simulation and analysis of power consumption and Metzner-Otto constant for impeller of 6PBT. Chin. J. Mech. Eng. 27(2014) 635–640.
  • [24] Sossa-Echeverria J., Taghipour F.: Computational simulation of mixing flow of shear thinning non-Newtonianfluids with various impellers in a stirred tank. Chem. Eng. Proc. 93(2015), 66–78.
  • [25] Woziwodzki S., Broniarz-Press L., Ochowiak M.: Transitional mixing of shearthinning fluids in vessels with multiple impellers. Chem. Eng. Techn. 33(2010), 7,1099–1106.
  • [26] Zhao J., Gao Z., Bao Y.: Effects of the blade shape on the trailing vortices in liquid flow. Chin. J. Chem. Eng. 19(2011), 2, 232–242.
  • [27] Khopkar A.R., Mavros P., Ranade V.V., Bertrand J.: Simulation of flow generated by an axial-flow impeller: batch and continuousoperation. Chem. Eng. Res. Des. 82(2004), 6, 737–751.
  • [28] Konfršt B., Konfršt J., Fořt I., Kotek M., Chára Z. Study of the turbulent flow structure around astandard Rushton impeller. Chem. Process. Eng. 35(2014), 1,137–147.
  • [29] Hartmann H., Derksen J.J., Montavon C., Pearson J., Hamill I.S.: Assessment of large eddy and RANS stirredsimulations by means of LDA. Chem. Eng. Sci. 59(2004), 2419–2432.
  • [30] Devarajulu C., Loganathan M.: Effect of impeller clearance and liquid level on critical impeller speed in an agitated vesselusing different axial and radial impellers. J. Appl. Mech. 9(2016), 6, 2753–2761.
  • [31] Venneker B., Derksen J., Vanden Akker H.E.A.: Turbulent flow of shear-thinning liquids in stirred tanks – The effects of Reynolds number and flow index. Chem. Eng. Res. Des. 88(2010), 7, 827–43.
  • [32] Youcefi A.: Etude expérimentale de l’écoulement de fluide viscoélastique autour d’un agitateur bipale dans une cuve agitée. (Experimental study of viscoelastic fluid flow around two-blade impeller in a stirred vessel). PhD thesis, Ecole Nationale Polytechnique, Toulouse 1993 (in French).
  • [33] Ahmed S., Mansour M., Hussein A.K., Sivasankaran S.: Mixed convection from a discrete heat source in enclosures with two adjacent moving walls and filled with micropolar nanofluids. Eng. Sci. Tech. Int. J. 19(2016), 1, 364–376.
  • [34] Laidoudi H., Helmaoui M.: Enhancement of natural convection heat transfer in concentric annular space using inclined elliptical cylinder. J. Naval Archit. Mar. Eng.17(2020), 2, 89–99.
  • [35] Al-Rashed A., Aich W., Kolsi L., Mahian O., Hussein A.K., Borjini M.: Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: Three-dimensional modeling. Entropy 19(2017), 5, 200–216.
  • [36] Laidoudi H., Bouzit M.: The effect of asymmetrically confined circular cylinder and opposing buoyancy on fluid flow and heat transfer. Defect Diffus. Forum 374(2017),18–28.
  • [37] Hussein A.K., Rout S., Fathinia F., Chand R., Mohammed H.: Natural convection in a triangular top wall enclosure with a solid strip. J. Eng. Sci. Tech. 10(2015), 10, 1326–1341.
  • [38] Acharya N.: Buoyancy driven magnetohydrodynamic hybrid nanofluid flow within a circular enclosure fitted with fins. Int. Commun. Heat Mass Transf. 133(2022),105980.
  • [39] Li Z., Hussein A.K., Younis O., Afrand M., Feng S.: Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects. Int. Commun. Heat Mass Transf.116(2020), 104650.
  • [40] Acharya N., Maity S., Kundu P.K.: Differential transformed approach of unsteady chemically reactive nanofluid flow over a bidirectional stretched surface in presence of magnetic field. Heat Transf. 49(2020), 6, 3917–3942.
  • [41] Hassouni S., Laidoudi H., Makined O.D., Bouzit M., Haddou B.: A qualitative study of mixing a fluid inside a mechanical mixer with the effect of thermal buoyancy. Arch. Thermodyn. 44(2023), 1, 105–119.
  • [42] Bulat P.V., Volkov K. N.: Fluid/solid coupled heat transfer analysis of a free rotating disc. Arch. Thermodyn. 39(2018), 3, 169–192.
  • [43] Bouakkaz R., Ouali A.E., Khelili Y., Faouzi S., Tiauiria I.: Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder dissipating uniform heat flux in the steady regime. Arch. Thermodyn. 40(2019), 4, 3–20.
  • [44] Bouakkaz R., Salhi F., Khelili Y., Quazzazi M., Talbi K.: Unconfined laminar nanofluid flow and heat transfer around a rotating circular cylinder in the steady regime. Arch. Thermodyn. 38(2017), 2, 3–20.
  • [45] Ramla M., Laidoudi H., Bouzit M.: Behaviour of a non-newtonian fluid in a helical tube under the influence of thermal buoyancy. Acta Mech. Autom. 16(2022), 2, 111–118.
  • [46] Mokeddem M., Laidoudi H., Makinde O.D., Bouzit M.: 3D simulation of incompressible poiseuille flow through 180 curved duct of square cross-section under effect of thermal buoyancy. Period. Polytech. Mech. Eng. 63(2019), 4, 257–269
  • [47] Mokeddem M., Laidoudi H., Bouzit M.: 3D simulation of Dean vortices at 30 position of 180 curved duct of square cross-section under opposing buoyancy. Defect Diffus. Forum 389(2018), 153–163.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3c6c400-875c-417c-bf49-fb104adc29df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.