PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hormeza popromienna: autofagia i inne mechanizmy komórkowe

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
Rocznik
Tom
Strony
7--15
Opis fizyczny
Bibliogr. 61 poz., rys.
Twórcy
autor
  • Centrum Radiobiologii i Dozymetrii Biologicznej, Instytut Chemii i Techniki Jądrowej, Warszawa
Bibliografia
  • 1. K.A. Thayer, R. Melnick, K. Burns, D. Davis, J. Huff. Fundamental flaws of hormesis for public health decisions, Environ Health Perspect. 113 (2005) 1271-1276.
  • 2. N. Hamada, H. Matsumoto, T. Hara, Y. Kobayashi. Intercellular and intracellular signaling pathways mediating ionizing radiationinduced bystander effects, J Radiat. Res (Tokyo). 48 (2007) 87-95.
  • 3. T.K. Hei, H. Zhou, V.N. Ivanov, M. Hong, H.B. Lieberman, D. J. Brenner, S.A. Amundson, C. R. Geard. Mechanism of radiation-induced bystander effects: a unifying model, J Pharm. Pharmacol. 60 (2008) 943-950.
  • 4. M.P. Little. Do non-targeted effects increase or decrease low dose risk in relation to the linear-non-threshold (LNT) model?, Mutat. Res. 687 (2010) 17-27.
  • 5. C. Mothersill, C. Seymour. Radiation-induced bystander effects and adaptive responses-the Yin and Yang of low dose radiobiology?, Mutat. Res. 568 (2004) 121-128.
  • 6. A. Wojcik, I. Szumiel, J. Liniecki. Hormeza czy to zjawisko powszechne i powszechnie nieznane?, „Postępy Techniki Jądrowej”, (2006) 34-39.
  • 7. E.J. Broome, D.L. Brown, R.E. Mitchel. Dose responses for adaption to low doses of (60)Co gamma rays and (3)H beta particles in normal human fibroblasts, Radiat. Res. 158 (2002) s. 181-186.
  • 8. J. D. Shadley, J. K. Wiencke. Induction of the adaptive response by X-rays is dependent on radiation intensity, Int. J Radiat. Biol. 56 (1989) 107-118.
  • 9. I. Szumiel. Adaptive response: stimulated DNA repair or decreased damage fixation?, Int. J Radiat. Biol. 81 (2005) 233-241.
  • 10 U. Aypar, W. F. Morgan, J. E. Baulch. Radiation-induced genomic instability: are epigenetic mechanisms the missing link?, Int. J Radiat. Biol. 87 (2011) 179-191.
  • 11. O. Kovalchuk, J. E. Baulch. Epigenetic changes and nontargeted radiation effects-is there a link?, Environ Mol. Mutagen. 49 (2008) 16-25.
  • 12. J. B. Little. Lauriston S. Taylor lecture: nontargeted effects of radiation: implications for low-dose exposures, Health Phys. 91 (2006) 416-426.
  • 13. W. F. Morgan. Is there a common mechanism underlying genomic instability, bystander effects and other nontargeted effects of exposure to ionizing radiation?, Oncogene. 22 (2003) 7094-7099.
  • 14. W. F. Morgan, M. B. Sowa. Non-targeted effects of ionizing radiation: implications for risk assessment and the radiation dose response profile, Health Phys. 97 (2009) 426-432.
  • 15. D. Averbeck. Non-targeted effects as a paradigm breaking evidence, Mutat. Res. 687 (2010) 7-12.
  • 16. D.T. Goodhead. New radiobiological, radiation risk and radiation protection paradigms, Mutat. Res. 687 (2010) 13-16.
  • 17. D.T. Goodhead. Panel discussion: Do non-targeted effects impact the relation between microdosimetry and risk?, Radiat. Prot. Dosimetry. 143 (2011) 554-556.
  • 18. R. Wakeford, E.J. Tawn. The meaning of low dose and low dose-rate, J Radiol. Prot. 30 (2010) 1-3.
  • 19. J.H. Hendry, S.L. Simon, A. Wojcik, M. Sohrabi, W. Burkart, E. Cardis, D. Laurier, M. Tirmarche, I. Hayata. Human exposure to high natural background radiation: what can it teach us about radiation risks?, J Radiol. Prot. 29 (2009) A29-A42.
  • 20. Z. Jaworowski. Radiation hormesis - a remedy for fear, Hum. Exp. Toxicol. 29 (2010) 263-270.
  • 21. L.E. Feinendegen. Reactive oxygen species in cell responses to toxic agents, Hum. Exp. Toxicol. 21 (2002) 85-90.
  • 22. S.Z. Liu. Biological effects of low level exposures to ionizing radiation: theory and practice, Hum. Exp. Toxicol. 29 (2010) 275-281.
  • 23. A. M. Vaiserman. Radiation hormesis: historical perspective and implications for low-dose cancer risk assessment, Dose Response. 8 (2010) 172-191.
  • 24. Madeo, N. Tavernarakis, G. Kroemer. Can autophagy promote longevity?, Nat. Cell Biol. 12 (2010) 842-846.
  • 25. R.L.van Montfort, M. Congreve, D. Tisi, R. Carr, H. Jhoti. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B, Nature. 423 (2003) 773-777.
  • 26. X. Liang, Y.H. So, J. Cui, K. Ma, X. Xu, Y. Zhao, L. Cai, W. Li. The low-dose ionizing radiation stimulates cell proliferation via activation of the MAPK/ERK pathway in rat cultured mesenchymal stem cells, J. Radiat. Res (Tokyo). 52 (2011) 380-386.
  • 27. M. Wojewódzka, M. Kruszewski, I. Szumiel. Effect of signal transduction inhibition in adapted lymphocytes: micronuclei frequency and DNA repair, Int. J Radiat. Biol. 71 (1997) 245-252.
  • 28. H. Matsumoto, A. Takahashi, T. Ohnishi. Nitric oxide radicals choreograph a radioadaptive response, Cancer Res. 67 (2007) 8574-8579.
  • 29. K.M. Ahmed, D. Nantajit, M. Fan, J.S. Murley, D.J. Grdina, J.J. Li. Coactivation of ATM/ERK/NF-kappaB in the low-dose radiation-induced radioadaptive response in human skin keratinocytes, Free Radic. Biol. Med. 46 (2009) 1543-1550.
  • 30. M. Fan, K.M. Ahmed, M.C. Coleman, D.R. Spitz, J.J. Li. Nuclear factorkappaB and manganese superoxide dismutase mediate adaptive radioresistance in low-dose irradiated mouse skin epithelial cells, Cancer Res. 67 (2007) 3220-3228.
  • 31. J.S. Murley, K.L. Baker, R.C. Miller, T.E. Darga, R.R. Weichselbaum, D.J. Grdina. SOD2-mediated adaptive responses induced by lowdose ionizing radiation via TNF signaling and amifostine, Free Radic. Biol Med. 51 (2011) 1918-1925.
  • 32. J.S. Murley, Y. Kataoka, R.C. Miller, J.J. Li, G. Woloschak, D.J. Grdina. SOD2-mediated effects induced by WR1065 and low-dose ionizing radiation on micronucleus formation in RKO human colon carcinoma cells, Radiat. Res. 175 (2011) 57-65.
  • 33. I.I. Pelevina, V.I. Gotlib, O.V. Kudriashova, A.M. Serebrianyi, G.G. Afanas’ev. [Genomic instability after exposure to radiation at low doses (in the 10-kilometer zone of the accident at the Chernobyl Atomic Electric Power Station and under laboratory conditions)], Radiats. Biol Radioecol. 36 (1996) 546-560
  • 34. I.I. Pelevina, V.A. Nikolaev, V.I. Gotlib, G.G. Afanas’ev, L.E. Kozlova, A.M. Serebrianyi, D.G. Tereshchenko, V.A. Tronov, E.A. Khramtsova. [The adaptive reaction of the blood lymphocytes in persons subjected to chronic radiation exposure at low doses], Radiats. Biol Radioecol. 34 (1994) 805-817.
  • 35. N.I. Riabchenko, M.M. Antoshchina, V.A. Nasonova, E.V. Fesenko. [The cytogenetic analysis of the adaptive response in the lymphocytes of donors living in areas with different levels of radioactive contamination., Radiats. Biol Radioecol. 35 (1995) 670-675.
  • 36. G.P. Makedonov, L.V. Tskhovrebova, S.V. Unzhakov, A.N. Semiachkina, I.M. Vasil’eva, G.D. Zasukhina. [Radioadaptive response in lymphocytes of children living in territories polluted by radionuclides as a result of the accident at the Chernobyl power plant], Radiats. Biol. Radioecol. 37 (1997) 640-644.
  • 37. S.V. Unizhakov, I.M. Vasil’eva, I.A. Meliksetova, A.N. Semiachkina, L.S. Baleva, L.Z. Kazantseva, G.D. Zasukhina. [The formation of an adaptive response in children exposed to the effect of low doses of radiation as a result of the accident at the Chernobyl Atomic Electric Power Station], Radiats. Biol. Radioecol. 34 (1994) 827-831.
  • 38. S.V. Unizhakov, G.N. L’vova, V.V. Chekova, A.N. Semiachkina, L.S. Baleva, G.D. Zasukhina, L.Z. Kazantseva. [Dna repair activity in children exposed to small doses of ionizing radiation as a result of the accident at the Chernobyl nuclear power station], Genetika. 31 (1995) 1433-1437.
  • 39. M. Ghiassi-Nejad, S. M. Mortazavi SM, J.R. Cameron, A. Niroomand-rad, P.A. Karam. Very high background radiation areas of Ramsar, Iran: preliminary biological studies, Health Phys. 82 (2002) 87-93.
  • 40. S. Mohammadi, M. Taghavi-Dehaghani,M.R. Gharaati, R. Masoomi, M. Ghiassi-Nejad. Adaptive response of blood lymphocytes of inhabitants residing in high background radiation areas of Ramsar-micronuclei, apoptosis and comet assays, J Radiat Res (Tokyo) 47 (2006) 279-285.
  • 41. J.R. Masoomi, S. Mohammadi, M. Amini, M. Ghiassi-Nejad. High background radiation areas of Ramsar in Iran: evaluation of DNA damage by alkaline single cell gel electrophoresis (SCGE), J Environ Radioact. 86 (2006) 176-186.
  • 42. K. Książek. Stres oksydacyjny jako uniwersalna przyczyna starzenia się: od somatycznych komórek człowieka do jednokomórkowych drożdży i prokariotycznych komórek bakteryjnych, „Postępy Biochem”. 56 (2010) 260-268.
  • 43. G. Kroemer, G. Marino, B. Levine. Autophagy and the integrated stress response, Mol. Cell. 40 (2010) 280-293.
  • 44. R. Scherz-Shouval, Z. Elazar. Regulation of autophagy by ROS: physiology and pathology, Trends Biochem. Sci. 36 (2011) 30-38.
  • 45. I. Szumiel. Autophagy, reactive oxygen species and the fate of mammalian cells, Free Radic. Res. 45 (2011) 253-265.
  • 46. S. Paglin, T. Hollister, T. Delohery, N. Hackett, M. McMahill, E. Sphicas, D. Domingo, J. Yahalom. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles, Cancer Res. 61 (2001) 439-444.
  • 47. S. Paglin, N.Y. Lee, C. Nakar, M. Fitzgerald, J. Plotkin, B. Deuel, N. Hackett, M. McMahill, E. Sphicas, N. Lampen, J. Yahalom. Rapamycinsensitive pathway regulates mitochondrial membrane potential, autophagy, and survival in irradiated MCF-7 cells, Cancer Res. 65 (2005) 11061-11070.
  • 48. S. Paglin, J. Yahalom. Pathways that regulate autophagy and their role in mediating tumor response to treatment, Autophagy. 2 (2006) 291-293.
  • 49. H. Kim, M.E. Bernard, J. Flickinger, M.W. Epperly, H. Wang, T.M. Dixon, D. Shields, F. Houghton, X. Zhang, J.S. Greenberger. The autophagy-inducing drug carbamazepine is a radiation protector and mitigator, Int. J Radiat. Biol. 87 (2011) 1052-1060.
  • 50. I. Martins, L. Galluzzi, G .Kroemer. Hormesis, cell death and aging, Aging (Albany. NY). 3 (2011) 821-828.
  • 51. R.S. Balaban, S. Nemoto, T. Finkel. Mitochondria, oxidants, and aging, Cell. 120 (2005) 483-495.
  • 52. R.A. Gottlieb, R.S. Carreira. Autophagy in health and disease. 5. Mitophagy as a way of life, Am. J Physiol Cell Physiol. 299 (2010) C203-C210.
  • 53. R.B. Hamanaka, N.S. Chandel. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes, Trends Biochem. Sci. 35 (2010) 505-513.
  • 54. D. Bhattacharjee. Role of radioadaptation on radiation-induced thymic lymphoma in mice, Mutat. Res. 358 (1996) 231-235.
  • 55. G.D. Lundberg. Antioxidant supplements found not to improve human survival, Medscape. J Med. 10 (2008) 222.
  • 56. G. Bjelakovic, D. Nikolova, L.L. Gluud, R.G. Simonetti, C. Gluud. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases, Cochrane Database Syst. Rev. (2008) CD007176.
  • 57. G. Bjelakovic, D. Nikolova, R.G. Simonetti, C. Gluud. Antioxidant supplements for preventing gastrointestinal cancers, Cochrane Database Syst. Rev. (2008) CD004183.
  • 58. N. Druesne-Pecollo, P. Latino-Martel, T. Norat, E. Barrandon, S. Bertrais, P. Galan, S. Hercberg. Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials, Int. J Cancer. 127 (2010) 172-184.
  • 59. M. Dewaele, H. Maes, P. Agostinis. ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy, Autophagy. 6 (2010) 838-854.
  • 60. A.S. Monfared, K. Hajian, R. Hosseini, A.Nasir. Association between Local External Gamma Rays and Frequency of Cancer in Babol-Iran, Dose Response. 8 (2010) 368-377.
  • 61. „Postępy Biochemii” numer specjalny pod redakcją Grzegorza Bartosza. Temat numeru - reaktywne pochodne tlenu, stres oksydacyjny, antyoksydacyjny - część I, 56, Nr 2/2010; część II, 56, Nr 3/2010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3c3b15d-0ce3-4e74-8efc-aa29c52efb47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.