PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Material Selection of Collapsible Pot Hauler and Finite Element Analysis Simulation Applied to the Selected Material

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current collapsible pot hauler uses a wooden frame, thus making much space in the working area of the fishing boat and also at this time challenging to find the best quality wood at this time. In this study, the wood material would replace by metal; the selection of the proper material is critically needed. A suitable material means the applied material has to deal with environmental conditions. Finding the appropriate material applied to the collapsible pot hauler; can be determined using a Multi-Criteria Decision Making (MCDM) approach. After selecting the proper material, the collapsible pot hauler simulates the material stress using the Finite Element Analysis (FEA) simulation. The material for the new model of collapsible pot hauler was selected using the WSM method. The material with the highest rank (selected) is AISI 304, with a preference value of 3.58. The static strength simulation using the FEA method utilizing Solidworks Software shows that the yield strength value is still below the material properties, which a maximum value is 200. MPa, the material safety factor is the minimum value above one, which is 1.24 on the line spool plate shafts. It means that the material AISI 304 is safe to be applied to the collapsible pot hauler.
Twórcy
  • Marine Fisheries Technology Study Program of IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
  • Marine Fisheries Technology Study Program of IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
  • Marine Fisheries Technology Study Program of IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
  • Agriculture Engineering and Biosystem Study Program of IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
  • Marine Fisheries Technology Study Program of IPB University, Jl. Raya Dramaga Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
Bibliografia
  • 1. Istrianto, K., Widagdo, A., Prasetyono, U., and Suryana, A. Crab fisheries on the north coast of the Karawang Region, West Java, Indonesia. AACL Bioflux 2021; 14(2): 859–865.
  • 2. Munir, M., Zainuddin, M. Laju penangkapan rajungan (portunus pelagicus) menggunakan bubu lipat di Perairan Lamongan. Grouper, 2019; 10(2): 1. https://doi.org/10.30736/grouper.v10i2.52.
  • 3. Ummaiyah, C., Fitri, A.D.P., Jayanto, B.B. Analisis Keramahan Lingkungan Bubu Rajungan Modifikasi Celah Pelolosan Di Perairan Kabupaten Rembang 2016; 1–9.
  • 4. Arios, A.H., Saputra, S.W., Solichin, A. Hasil tangkapan rajungan (Portunus pelagicus) dengan menggunakan alat tangkap bubu lipat yang didaratkan di TPI Tanjung Sari Kabupaten Rembang. Management of Aquatic Resources Journal (MAQUARES) 2013; 2(3): 243–248. https://doi.org/10.14710/marj.v2i3.4221.
  • 5. Muawanah, U., Huda, H.M., Koeshendrajana, S., Nugroho, D., Anna, Z., Ghofar, A. Keberlanjutan perikanan rajungan Indonesia : pendekatan model bioekonomi. Jurnal Kebijakan Perikanan Indonesia 2017; 9(2): 71–83.
  • 6. Zulkarnain, Z., Wahju, R.I., Wahyudi, T., Purwangka, F., Yuwandana, D.P. Penggunaan bubu lipat modifikasi pada penangkapan rajungan (Portunus sp.) di perairan Utara Pemalang, Jawa Tengah. ALBA-CORE Jurnal Penelitian Perikanan Laut 2020; 3(2): 155–167. https://doi.org/10.29244/core.3.2.155–167.
  • 7. Kunsook, C., Dumrongrojwatthana, P. Species diversity and abundance of marine crabs (Portunidae: Decapoda) from a collapsible crab trap fishery at Kung Krabaen Bay, Chanthaburi Province, Thailand. Tropical Life Sciences Research, 2017; 28(1): 45–67. https://doi.org/10.21315/TLSR2017.28.1.4.
  • 8. Latifian, A.H., Tavakkoli-Moghaddam, R., Keramati, M.A. New Framework Based on a Multicriteria Decision-making Model of Technology Transfer in the Auto-battery Manufacturing Industry under Uncertainty. International Journal of Engineering, 2022; 35(10): 2040–2055. https://doi.org/10.5829/ije.2022.35.10a.21.
  • 9. Maleque, M.A., Dyuti, S., Rahman, M.M. Material selection method in the design of automotive brake disc. WCE 2010 – World Congress on Engineering 2010; 3(2010): 2322–2326.
  • 10. Anojkumar, L., Ilangkumaran, M., Sasirekha, V. Comparative analysis of MCDM methods for pipe material selection in sugar industry. Expert Systems with Applications, 2014; 41(6): 2964–2980. https://doi.org/10.1016/j.eswa.2013.10.028.
  • 11. Odu, G.O. Material Selection Optimization Using Weighted Sum Method and Team-Compromise Instrument 2018; 1–11.
  • 12. Mathew, M., Sahu, S. Comparison of new multicriteria decision making methods for material handling equipment selection. Management Science Letters 2018; 8(3): 139–150. https://doi.org/10.5267/j.msl.2018.1.004.
  • 13. Edwards, K.L. Materials influence on design: A decade of development. Materials and Design 2011; 32(3): 1073–1080. https://doi.org/10.1016/j.matdes.2010.10.009.
  • 14. Chatterjee, P., Chakraborty, S. Material selection using preferential ranking methods. Materials and Design 2012; 35: 384–393. https://doi.org/10.1016/j.matdes.2011.09.027.
  • 15. Reza Rezaie, H., Beigi Rizi, H., Rezaei Khamseh, M.M., Öchsner, A. Application of the Finite Element Method in Dentistry. Advanced Structured Materials 2020; 123: 211–224. https://doi.org/10.1007/978–3-030–48931–1_7.
  • 16. Joshi, J.J., Patel, D.M. Design and Failure Analysis of Single Cylinder Petrol Engine Crankshaft using ANSYS Software. International Journal of Engineering Science and Computing 2017; 7(4): 10549–10555.
  • 17. Kingsley, U., Ehi, I., Adgidzi, D. Finite Element Analysis of Bamboo Bicycle Frame. British Journal of Mathematics & Computer Science, 2015; 5(5): 583–594. https://doi.org/10.9734/bjmcs/2015/13451.
  • 18. Xiong, F., Wang, D., Zhang, S., Cai, K., Wang, S., Lu, F. Lightweight optimization of the side structure of automobile body using combined grey relational and principal component analysis. Structural and Multidisciplinary Optimization 2018; 57(1): 441–461. https://doi.org/10.1007/s00158–017–1749–6.
  • 19. Wang, J., Shi, C., Yang, N., Sun, H., Liu, Y., Song, B. Strength, stiffness, and panel peeling strength of carbon fiber-reinforced composite sandwich structures with aluminum honeycomb cores for the vehicle body. Composite Structures 2018; 184: 1189–1196. https://doi.org/10.1016/j.compstruct.2017.10.038.
  • 20. Evtiukov, S., Golov, E., Ginzburg, G. Finite element method for reconstruction of road traffic accidents. Transportation Research Procedia 2018; 36: 157–165. https://doi.org/10.1016/j.trpro.2018.12.058.
  • 21. Pervan, N., Muminović, A., Muminović, A., Delić, M. Development of Parametric CAD Model and Structural Analysis of the Car Jack.” Advances in Science and Technology Research Journal 2019; 13(3): 24–30. https://doi.org/10.12913/22998624/109791.
  • 22. Chakraborty, S., Zavadskas, E.K. Applications of WASPAS Method in Manufacturing Decision Making. Informatica 2014; 25: 1–20.
  • 23. Sianturi, L.T. Implementation of Weight Sum Model (WSM) in the Selection of Football Athletes.” International Journal of Informatics and Computer Science (The IJICS), 2019; 3(1): 24–27.
  • 24. Nasyuha, A.H., Yakub, S., Maya, W.R., Syahra, Y., Saniman, S. Analisis Wsm Dan Wp Dalam Menentukan Pupuk Terbaik Dengan Pendekatan Wsm-Score Dan Vector. Journal of Science and Social Research 2021; 4(2): 122. https://doi.org/10.54314/jssr.v4i2.538.
  • 25. Miljković, B., Žižović, M.R., Petojević, A., Damljanović, N. New Weighted Sum Model 2017; 31(10): 2991–2998.
  • 26. Mohamed, M., Hashim, F.R., Amini, M.H.M., Janvekar, A.A., Razab, M.K.A.A., Yusuf, N.A. A.N., Rizman, Z.I. Finite element analysis of car hood for impact test by using SolidWorks software in automotive application. Journal of Fundamental and Applied Sciences, 2018; 10(1): 936–955. http://dx.doi.org/10.4314/jfas.v10i1s.69.
  • 27. Huda, N., Prabowo, A.R. Investigation of optimum ply angle using finite element (FE) approach: References for technical application on the composite navigational buoys. Procedia Structural Integrity 2020; 27(2019): 140–146. https://doi.org/10.1016/j.prostr.2020.07.019.
  • 28. Różyło, P., Wójcik, Ł. FEM and Experimental Based Analysis of the Stamping Process of Aluminum Alloy. Advances in Science and Technology Research Journal 2017; 11(3): 94–101.
  • 29. Szturomski, B., Kiciński, R., Szturomska, A., Krawczyk, J. Repair of Closed Fermentation Chamber and Its Influence on Strength Properties of the Tank – Case Study. Advances in Science and Technology Research Journal 2022; 16(6): 97–107. https://doi.org/10.12913/22998624/155817.
  • 30. Fish, J., Belytschko, T. A First Course in Finite Elements. A First Course in Finite Elements (First.). West Sussex: Jhon Wiley and Sons, 2007. https://doi.org/10.1002/9780470510858.
  • 31. Dapas, S. Aplikasi metode elemen hingga pada analisis struktur rangka batang. Jurnal Ilmiah Media Engineering 2011; 1(2): 156–160.
  • 32. Yeh, M.K., Wang, C.H. Stress analysis of composite wind turbine blade by finite element method. IOP Conference Series: Materials Science and Engineering 2017; 241(1): 3–7. https://doi.org/10.1088/1757–899X/241/1/012015.
  • 33. Szulc, M., Malujda, I., Talaśka, K. Method of Determination of Safety Factor on Example of Selected Structure. Procedia Engineering 2016; 136: 50–55. https://doi.org/10.1016/J.PROENG.2016.01.173.
  • 34. Musto, J.C. The Safety Factor: Case Studies in Engineering Judgment. International Journal of Mechanical Engineering Education 2010; 38(4): 286–296. https://doi.org/10.7227/IJMEE.38.4.2.
  • 35. Qiang, S., Liu, M.Z. A new safety factor prediction model for mass concrete surface cracking in early age. Mathematical Problems in Engineering, 2014; 2014. https://doi.org/10.1155/2014/183209.
  • 36. Beldar, R., Komble, S. Mechanical Design of Shell and Tube Type Heat Exchanger as per ASME Section VIII Div.1 and TEMA Codes for Two Tubes. International Journal of Engineering and Technical Research 2018; 8(7): 1–4.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3c28add-ec61-4639-a56e-e551c3ba57d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.