PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Możliwości wykorzystania nanotechnologii i nanomateriałów w procesach uzdatniania wody i oczyszczania ścieków. Cz. II, Membrany i procesy membranowe

Autorzy
Identyfikatory
Warianty tytułu
EN
Possibility of nanotechnology and nanomaterials application in water and wastewater treatment processes. Part. II, Membranes and membrane processes
Języki publikacji
PL
Abstrakty
PL
Obserwuje się wprowadzenie nowych i obiecujących nanomateriałów do wytwarzania nowej generacji membran o zaawansowanych właściwościach antyfoulingowych i antyskalingowych. Membrany wykonane z tych materiałów pozwalają uzyskać znacznie wyższe strumienie wody/permeatu niż cienkowarstwowe membrany kompozytowe stosowane obecnie w procesach separacji membranowej. Nanomateriały, które są najczęściej stosowane do modyfikacji membran to: krzemionka, zeolity, metale (Ag, Zr i Ti) i tlenki metali (TiO2, ZrO2, ZnO, Al2O3), oraz materiały węglopochodne, tj. nanorurki węglowe (CNT) i materiały na bazie grafenu. W artykule przedstawiono aktualny stan wiedzy i wyzwania związane z przygotowaniem membran wykonanych z nanomateriałów. Nowatorskie membrany kompozytowe można podzielić na dwie kategorie: (I) membrany wykonane wyłącznie z nanomateriałów, znane również jako membrany wolnostojące oraz (II) membrany polimerowo-ceramiczne modyfikowane nanomateriałami. Omówiono perspektywę rozwoju membran opartych na nanomateriałach w odniesieniu do efektywności oraz powiększenia skali.
EN
The introduction of novel and promising nano-materials for development of next generation of membranes of advanced antifouling and anti-scaling properties as well as for disinfection and photo-catalysis, have been observed. Membranes made of these materials enable to obtain significantly higher water/permeate fluxes than thin film composite membranes currently used in membrane separation processes. Nano-materials, which are the most often applied for membrane modifications are: silica, zeolites, metals (Ag, Zr and Ti) and metal oxides (TiO2, ZrO2, ZnO, Al2O3), and carbon-based materials, i.e. carbon nanotubes (CNT) and graphene based materials. In the paper, the state of the art in progress and challenges related to preparation of membranes made of nano-materials is presented. Novel composite membranes can be divided into two categories: (I) membranes made of only from nano-materials also known as freestanding membranes and (II) polymeric/ceramic membranes modified with nano-materials. The future prospect of membranes based on nano-materials in regard to the final separation efficiency and commercial scaling up has been discussed.
Czasopismo
Rocznik
Tom
Strony
8--19
Opis fizyczny
Bibliogr. 83 poz., rys., tab.
Twórcy
  • Polska Akademia Nauk Instytut Podstaw Inżynierii Środowiska
Bibliografia
  • 1. Madhura L., Kanchi S., Sabela M.I., Singh S., Bisetty K., Inamuddin, Membrane technology for water purification, Environmental Chemistry Letters, 16 (2018) 343–365.
  • 2. Bodzek M., Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review, Archives of Envi-ronmental Protection, 45(4) (2019) 4-19.
  • 3. Bodzek, M., Konieczny, K., Kwiecińska-Mydlak, A. The application for nanotech-nology and nanomaterials in water and wastewater treatment. Membranes, pho-tocatalysis and disinfection, Desal. Water Treat., 186 (2020) 88–106.
  • 4. Werber J.R., Osuji C.O., Elimelech M., Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater., 1 (2016) 16018.
  • 5. Werber J.R., Deshmukh A., Elimelech M.. The critical need for increased selectivity, not increased water permeability, for desalination membranes, Environ. Sci. Technol. Lett., 3 (2016) 112–120.
  • 6. Shen Y.-X.., Saboe P.O, Sines I.T., Erbakan M., Kumar M., Biomimetic membranes: a review, J. Membr. Sci., 454 (2014) 359–381.
  • 7. Manawi Y., K ochkodan V., A li Hussein M., Khaleel M.A., Khraisheh M., Hilal N., Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination? Desalination, 391 (2016) 69–88.
  • 8. Ihsanullah A.A., Carbon nanotube membranes for water purification: Developments, challenges, and prospects for the future, Sep Purif Technol. 209 (2019) 307–337.
  • 9. Ali, S., Ur Rehman, S.A., Luan, H.Y., Usman Farid, M., Huang, H., Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination, Science of the Total Environment, 646 (2019) 1126–1139.
  • 10. Hebbar R.S., Isloor A.M., Inamuddin, Asiri A.M., Carbon nanotube – and graphene-based advanced membrane materials for desalination, Environ. Chem. Lett. 15 (2017) 643–671.
  • 11. Bodzek, M., Konieczny, K., Kwiecińska-Mydlak, A., Nanotechnology in water and wastewater treatment. Graphene – the nanomaterial for next generation of semiper-meable membranes, Critical Reviews in Environmental Science and Technology, 50 (2020) 1515-1579.
  • 12. Bodzek M., Separacja membranowa w inżynierii środowiska. Podstawy procesów cz.I, Technologia Wody, 1(15) (2012) 22-29.
  • 13. Lee K.P., Arnot T.C., Mattia D., A review of reverse osmosis membrane materials for desalination-development to date and future potential, J. Membr. Sci., 370 (2011) 1–22.
  • 14. Yang Z., Ma X.-H, Tang C.Y., Recent development of novel membranes for desalina-tion. Desalination, 434 (2018) 37-59.
  • 15. Fane C., Tang R., Wang R., Membrane technology for water: microfiltration, ul-trafiltration, nanofiltration, and reverse osmosis, in: Treatise on Water Science Wil¬derer P. (Eds.), vol.4: Water Quality Engi¬neering, (2011) 301-335, Elsevier Science.
  • 16. Dong L.-X., Huang X.-C., Wang Z., Yang Z., Wang X.-M., Tang C.Y., A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles, Sep. Purif. Technol., 166 (2016) 230–239.
  • 17. Mollahosseini A., Rahimpour A., Interfacially polymerized thin film nanofiltration membranes on TiO2 coated polysulfone substrate, J. Ind. Eng. Chem., 20 (2014) 1261–1268.
  • 18. Kebria M.R.S., Jahanshahi M., Rahimpour A., SiO2 modified polyethyleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions, Desalination, 367 (2015) 255–264.
  • 19. Andrade P.F., de Faria A.F., Oliveira S.R., Arruda M.A.Z., Gonçalves M.D.C., Impro-ved antibacterial activity of nanofiltration polysulfone membranes modified with si¬lver nanoparticles, Water Res., 81 (2015) 333–342.
  • 20. Lv Y., Yang H.-C., Liang H.-Q., Wan L.-S., Xu Z.-K., Novel nanofiltration membrane with ultrathin zirconia film as selective layer, J. Membr. Sci., 500 (2016) 265–271.
  • 21. Lind M.L., Ghosh A.K., Jawor A., Huang X.F., Hou W., Yang Y., Hoek E.M.V., In-fluence of zeolite crystal size on zeolite polyamide thin film nanocomposite mem-branes, Langmuir, 25 (2009) 10139-10145.
  • 22. Lind M.L., Jeong B.H., Subramani A., Huang X.F., Hoek E.M.V., Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes, Journal of Materials Research, 24 (2009) 1624-1631.
  • 23. Lee H.S., Im S.J., Kim J.H., Kim H.J., Kim J.P., Min B.R., Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination, 219 (2008) 48–56.
  • 24. Kowalik-Klimczak A., Stanisławek E., Kacprzyńska-Gołacka J., Bednarska A., Osuch-Słomka E., Skowroński J., The polyamide membranes functionalized by na¬noparticles for biofouling control, Desal. Water Treat., 128 (2018) 243-252.
  • 25. Hoseini S.N., Pirzaman A.K., Aroon M.A., Pirbazari A.E. , Photocatalytic degradation of 2, 4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes, J Water Process Eng., 17 (2017) 124–134.
  • 26. Esfahani M.R., Lyler T.J., Stretz H.A., Wells M.J.M., Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water pu¬rification, Desalination, 372 (2015) 47–56.
  • 27. Rabiee H., Vatanpour V., Farahani M.H. D.A., Zarrabi H., Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles, Sep. Purif. Technol., 156 (2015) 299–310.
  • 28. Li H., Shi W., Zhu H., Zhang Y., Du Q., Qin X., Effects of zinc oxide nanospheres on the separation performance of hollow fiber poly(piperazine-amide) composite nanofiltration membranes, Fibers Polym., 17 (2016) 836–846.
  • 29. Li L.-H., Deng J.-C., Deng H.-R., Liu Z.- L., Xin L., Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes, Carbohydr. Res., 345 (2010) 994–998.
  • 30. Szymański K., Sienkiewicz P., Darowna D., Jose M., Szymańska K., Mozia S., Inve-stigation on polyethersulfone membranes modified with Fe3O4 – trisodium citrate nanoparticles, Desal. Water Treat., 128 (2018) 265-271.
  • 31. Yan L., Li Y.-S., Xiang C.B., Xianda S., Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance, J. Membr. Sci., 276 (2006) 162-167.
  • 32. Maximous N., Nakhla G., Wan W., Wong K., Preparation, characterization and per-formance of Al2O3/PES membrane for wastewater filtration, J. Membr. Sci., 341 (2009) 67–75.
  • 33. Yu S., Zuo X., Bao R., Xu X., Wang J., Xu J., Effect of SiO2 nanoparticle addition on the characteristics of a new organic–inorga¬nic hybrid membrane, Polymer, 50 (2009) 553–559.
  • 34. Zhang C., Hu Z., Deng B., Silver nanoparticles in aquatic environments: physioche-mical behavior and antimicrobial mechanisms, Water Res., 88 (2016) 403–427.
  • 35. Ben-Sasson M., Lu X., Bar-Zeev E., Zodrow K.R., Nejati S., Qi G., Giannelis E.P., Elimelech M., In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation, Water Research, 62 (2014) 260 – 270.
  • 36. Yang H.-L., Lin J. C.-T., Huang C., Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination, Water Research, 43 (2009) 3777 – 3786.
  • 37. Zodrow K., Brunet L., Mahendra S., Li D., Zhang A., Li Q., Alvarez P.J.J., Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Research, 43 (2009) 715 – 723.
  • 38. Mozia S., Jose M., Sienkiewicz P., Szymański K., Darowna D., Zgrzebnicki M., Mar-kowska-Szczupak A., Polyethersulfone ultrafiltration membranes modified with hybrid Ag/titanate nanotubes: physicochemical characteristics, antimicrobial properties and fouling resistance, Desal. Water Treat., 128 (2018) 106-118.
  • 39. Holt J.K., Park H.G., Wang Y., Stadermann M., Artyukhin A.B., Grigoropoulos C.P., Noy A., Bakajin O., Fast mass transport through sub-2-nanometer carbon nanotubes, Science, 312 (2006) 1034–1037.
  • 40. Abraham J., Vasu K.S., Williams C.D., Gopinadhan K., Su Y., Cherian C.T., Dix J., Prestat E., Haigh S.J., Grigorieva I.V., Carbone P., Geim A.K., Nair R.R., Tunable sie-ving of ions using graphene oxide membranes, Nat. Nanotechnol., 12 (2017) 546–545.
  • 41. Hegab H.M., Zou L., Graphene oxide-assisted membranes: Fabrication and poten¬tial applications in desalination and water purification, J. Memb. Sci., 484 (2015) 95-106.
  • 42. https://commons.wikimedia.org/wiki/File:Graphite-sheet-side-3D-balls.png.
  • 43. Hu M., Mi B., Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol., 47 (2013) 3715–3723.
  • 44. Songa N., Gao X., Mac Z., Wanga X., Weia Y., Gao C., A review of graphene-based separation membrane: Materials, characteristics, preparation and applications, Desalination, 437 (2018) 59-67.
  • 45. Chen X., Liu G., Zhang H., Fan Y., Fabrication of graphene oxide composite mem-branes and their application for pervaporation dehydration of butanol, Chin.J. Chem. Eng., 23 (2015) 1102–1109.
  • 46. Xu W.L., Fang C., Zhou F., Song Z., Liu Q., Qiao R., Yu M., Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification, Nano Lett., 17 (2017) 2928–2933.
  • 47. Yuan Y., Gao X., Wei Y., Wang X., Wang J., Zhang Y., Gao C., Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes, Desalination, 405 (2017) 29–39.
  • 48. Nicolaï A., Sumpter B.G., Meunier V., Tunable water desalination across Graphene oxide framework membranes, Phys. Chem. Chem. Phys., 16 (2014) 8646–8654.
  • 49. Cohen-Tanugi D., Grossman J.C., Water desalination across nanoporous graphene, Nano Lett., 12 (2012) 3602–3608.
  • 50. Sun P., Zhu M., Wang K., Zhong M., Wei J., Wu D., Xu Z., Zhu H., Selective ion pe-netration of graphene oxide membranes, ACS Nano, 7 (2012) 428–437.
  • 51. Sears K., Dumée L., Schütz J., She M., Huynh C., Hawkins S., Duke M., Gray S., Recent developments in carbon nanotube membranes for water purification and gas separation, Materials 3 (2010) 127.
  • 52. Hinds B.J., Chopra N., Rantell T., Andrews R., Gavalas V., Bachas L.G., Aligned multiwalled carbon nanotube membranes, Science, 303 (2004) 62–65.
  • 53. Majumder M ., C hopra N ., A ndrews R ., Hinds B.J., Nanoscale hydrodynamics: enhanced flow in carbon nanotubes, Nature, 438 (2005) 44.
  • 54. Hummer G., Rasaiah J.C., Noworyta J.P., Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414 (2001) 188–190.
  • 55. Thomas J.A., McGaughey A.J.H., Water flow in carbon nanotubes: transition to subcontinuum transport, Phys. Rev. Lett., 102 (2009) 184502.
  • 56. Baek Y., Kim C., Seo D.K., Kim T., Lee J.S., Kim Y.H., Ahn K.H., Bae S.S., Lee S.C., Lim J., Lee, K. Yoon J., High performance and antifouling vertically aligned carbon nanotube membrane for water purification, J. Membr. Sci., 460 (2014) 171–177.
  • 57. Peng X., Jin J., Ericsson E.M., Ichinose I., General method for ultrathin free-standing films of nanofibrous composite materials, J. Am. Chem. Soc., 129 (2007) 8625–8633.
  • 58. Kar S., Bindal R.C., Tewari P.K., Carbon nanotube membranes for desalination and water purification: challenges and opportunities, Nano Today, 7 (2012) 385–389.
  • 59. Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V., Zangeneh H., Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates, J. Membr. Sci., 453 (2014) 292–301.
  • 60. Das R., Abd Hamid S.B., Ali M.E., Ismail A.F., Annuar M.S.M., Ramakrishna S., Multifunctional carbon nanotubes in water treatment: the present, past and futu¬re, Desalination, 354 (2014)160–179.
  • 61. Wang J., Zhang P., Liang B., Liu Y., Xu T., Wang L., Cao B., Pan K., Graphene oxide as an effective barrier on a porous nanofibrous membrane for water treatment, ACS Appl. Mater. Interfaces, 8 (2016) 6211–6218.
  • 62. Xu K., Feng B., Zhou C., Huang A., Synthesis of highly stable graphene oxide mem-branes on polydopamine functionalized supports for seawater desalination, Chem. Eng. Sci., 146 (2016) 159–165.
  • 63. Kim S.G., Hyeon D.H., Chun J.H., Chun B.H., Kim S.H., Novel thin nanocomposite RO membranes for chlorine resistance, Desalin. Water Treat., 51 (2013) 6338–6345.
  • 64. Choi W., Choi J., Bang J., Lee J.H., Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces, 5 (2013) 12510–12519.
  • 65. Hung W.-S., An Q.F., De Guzman M., Lin H.Y., Huang S.H., Liu W.R., Hu C.C., Lee K.R., Lai J.Y., Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon, 68 (2014) 670–677.
  • 66. Perreault F., Tousley M.E., Elimelech M., Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci.Technol. Lett., 1 (2014) 71–76.
  • 67. Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., et al., Antibacterial activity of graphite, graphite oxide ,graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 5 (2011) 6971–6980.
  • 68. Tu Y., Lv M., Xiu P., Huynh T., Zhang M., Castelli M., et al., Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets, Nat. Nanotechnol., 8 (2013) 594–601.
  • 69. Sun X.F., Qin J., Xia P.F., Guo B.B., Yang C.M., Song C., Wang S.G., Graphene oxi-de–silver nanoparticle membrane for biofouling control and water purification, Chemical Engineering Journal, 281 (2015) 53–59.
  • 70. Ma W., Soroush A., Van Anh Luong T., Rahaman S., Cysteamine – and graphene oxide-mediated copper nanoparticle decoration on reverse osmosis membrane for enhanced anti-microbial performance, Journal of Colloid and Interface Science, 501 (2017) 330–340.
  • 71. Chan W.-F., Marand E., Martin S.M., Novel zwitterion functionalized carbon na-notube nanocomposite membranes for improved RO performance and surface anti-biofouling resistance, J. Membr. Sci., 509 (2016) 125–137.
  • 72. Xue S.-M., Xu Z.-L., Tang Y.-J., Ji C.-H., Polypiperazine-amide nanofiltration membrane modified by different functio¬nalized multiwalled carbon nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8 (2016) 19135–19144.
  • 73. Amini M., Jahanshahi M., Rahimpour A., Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes, J. Membr. Sci., 435 (2013) 233–241.
  • 74. Tiraferri A., Vecitis C.D., Elimelech M., Covalent binding of single-walled carbon na-notubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces, 3 (2011) 2869–2877.
  • 75. Lee J., Chae H.R., Won Y.J., Lee K., Lee C.H., Lee H.H., Kim I.C., Lee J.M., Gra-phene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci., 448 (2013) 223–230.
  • 76. Xu Z., Zhang J., Shan M., Li Y., Li B., Niu J., Zhou B., Qian X., Organosilane func-tionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, J. Membr. Sci., 458 (2014) 1–13.
  • 77. Zhao C., Xu X., Chen J., Yang F., Optimization of preparation conditions of poly-(vinylidene fluoride)/graphene oxide microfiltration membranes by the Taguchi experimental design, Desalination, 334 (2014) 17–22.
  • 78. Xia S., Ni M., Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal, Journal of Membrane Science, 473 (2015) 54–62.
  • 79. Vatanpour V., Madaeni S.S., Moradian R., Zinadini S., Astinchap B., Novel antibi-fouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes, Sep.Purif.Technol, 90 (2012) 69–82.
  • 80. Yu L., Zhang Y., Zhang B., Liu J., Zhang H., Song C., Preparation and characteri-zation of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties, J. Membr. Sci. 447 (2013) 452–462.
  • 81. Zhao H., Wu L., Zhou Z., Zhang L., Chen H., Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated Graphene oxide, Phys. Chem. Chem. Phys., 15 (2013) 9084–9092.
  • 82. Mahmoudi E., Ng L.Y., Ba-Abbad M.M., Mohammad A.W., Novel nanohybrid poly-sulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates, Chemical Engineering Journal, 277 (2015) 1–10.
  • 83. Wu Q., Chen G.E., Sun W.G, Xu Z.L., Konga Y.P., Zheng X.P., Xu S.J.., Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance, Chemical Engineering Journal, 313 (2017) 450–460.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3b9be86-625b-4027-ad2e-994e4cd5663b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.