Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper contains an experimental analysis of a heat storage tank's heat loss and exergy efficiency using a basalt porous bed as a storage material. The basic parameters of the laboratory bench with measuring equipment are presented and the experimental procedure is discussed. The methodology for evaluating the energy potential of the heat storage process for large-scale energy storage systems is described. The main novelty of the presented system is the application of the slenderness of the heat accumulator, which corresponds to the development of the system in a post-mining shaft. Based on the analysis of the experiment, the exergy cycle efficiency of the heat storage unit was determined to equal 52.3%, and the energy efficiency equal to 96.6%.
Czasopismo
Rocznik
Tom
Strony
37--44
Opis fizyczny
Bibliogr. 20 poz., fot., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Faculty of Energy and Environment Engineering, Department of Power Engineering and Turbomachinery, 18 Konarskiego street, 44-100 Gliwice, Poland
autor
- Energoprojekt-Katowice S.A., 15 Jesionowa street, 40-159 Katowice, Poland
Bibliografia
- [1] A. A. Kebede, T. Kalogiannis, J. van Mierlo, and M. Berecibar, “A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112213, May 2022, doi: 10.1016/J.RSER.2022.112213.
- [2] S. Griffiths, B. K. Sovacool, J. Kim, M. Bazilian, and J. M. Uratani, “Decarbonizing the oil refining industry: A systematic review of sociotechnical systems, technological innovations, and policy options,” Energy Research & Social Science, vol. 89, p. 102542, Jul. 2022, doi: 10.1016/J.ERSS.2022.102542.
- [3] J. Kotowicz, D. Węcel, and M. Jurczyk, “Analysis of component operation in power-to-gas-to-power installations,” Applied Energy, vol. 216, pp. 45-59, Apr. 2018, doi: 10.1016/J.APENERGY.2018.02.050.
- [4] W. Uchman, A. Skorek-Osikowska, M. Jurczyk, and D. Węcel, “The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit,” Energy, vol. 213, p. 118802, Dec. 2020, doi: 10.1016/J.ENERGY.2020.118802.
- [5] Ł. Bartela, A. Skorek-Osikowska, S. Dykas, and B. Stanek, “Thermodynamic and economic assessment of compressed carbon dioxide energy storage systems using a post-mining underground infrastructure,” Energy Conversion and Management, vol. 241, p. 114297, Aug. 2021, doi: 10.1016/J.ENCONMAN.2021.114297.
- [6] Ł. Bartela, M. Lutyński, G. Smolnik, and S. Waniczek, “Underground Compressed Air Storage Installation. European Patent Application,” 20000302.8
- [7] M. Cascetta, G. Cau, P. Puddu, and F. Serra, “A comparison between CFD simulation and experimental investigation of a packed-bed thermal energy storage system,” Applied Thermal Engineering, vol. 98, pp. 1263-1272, Apr. 2016, doi: 10.1016/J.APPLTHERMALENG.2016.01.019.
- [8] C. Prieto and L. F. Cabeza, “Thermal energy storage (TES) with phase change materials (PCM) in solar power plants (CSP). Concept and plant performance,” Applied Energy, vol. 254, p. 113646, Nov. 2019, doi: 10.1016/J.APENERGY.2019.113646.
- [9] N. Courtois, M. Najafiyazdi, R. Lotfalian, R. Boudreault, and M. Picard, “Analytical expression for the evaluation of multi-stage adiabatic-compressed air energy storage (A-CAES) systems cycle efficiency,” Applied Energy, vol. 288, p. 116592, Apr. 2021, doi: 10.1016/J.APENERGY.2021.116592.
- [10] H. Agalit, N. Zari, M. Maalmi, and M. Maaroufi, “Numerical investigations of high temperature packed bed TES systems used in hybrid solar tower power plants,” Solar Energy, vol. 122, pp. 603-616, Dec. 2015, doi: 10.1016/J.SOLENER.2015.09.032.
- [11] Y. Zhu, D. Wang, P. Li, Y. Yuan, and H. Tan, “Optimization of exergy efficiency of a cascaded packed bed containing variable diameter particles,” Applied Thermal Engineering, vol. 188, p. 116680, Apr. 2021, doi: 10.1016/J.APPLTHERMALENG.2021.116680
- [12] W. Sebastian et al., “Design and Construction Challenges for a Hybrid Air and Thermal Energy Storage System Built in the Post-Mining Shaft,” Journal of Thermal Science, vol. 31, no. *, p. 2022, 2022, doi: 10.1007/s11630-022-1593-x.
- [13] M. L. Jurczyk, S. Rulik, and L. Bartela, “Thermal energy storage in rock bed-CFD analysis,” 2020.
- [14] J. Ochmann, K. Rusin, S. Rulik, and Ł. Bartela, “Współczesne Problemy Ochrony Środowiska i Energetyki 2021 Identyfikacja współczynnika wnikania ciepła w procesie ładowania zasobnika Thermal Energy Storage na potrzeby adiabatycznego systemu CAES.”
- [15] S. M. White and C. L. Tien, “Analysis of flow channeling near the wall in packed beds*,” 1987.
- [16] N. Soares, C. Martins, M. Gonçalves, P. Santos, L. S. da Silva, and J. J. Costa, “Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review,” Energy and Buildings, vol. 182, pp. 88-110, Jan. 2019, doi: 10.1016/J.ENBUILD.2018.10.021.
- [17] M. Thebault, S. Giroux-Julien, V. Timchenko, C. Ménézo, and J. Reizes, “Transitional natural convection flow in a vertical channel: Impact of the external thermal stratification,” International Journal of Heat and Mass Transfer, vol. 151, p. 119476, Apr. 2020, doi: 10.1016/J.IJHEATMASSTRANSFER.2020.119476.
- [18] I. H. Bell, J. Wronski, S. Quoilin, and V. Lemort, “Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop,” Industrial and Engineering Chemistry Research, vol. 53, no. 6, pp. 2498-2508, Feb. 2014, doi: 10.1021/ie4033999.
- [19] B. Rezaie, B. v. Reddy, and M. A. Rosen, “Exergy analysis of thermal energy storage in a district energy application,” Renewable Energy, vol. 74, pp. 848-854, Feb. 2015, doi: 10.1016/J.RENENE.2014.09.014.
- [20] L. Amiri, S. A. Ghoreishi-Madiseh, F. P. Hassani, and A. P. Sasmito, “Estimating pressure drop and Ergun/Forchheimer parameters of flow through packed bed of spheres with large particle diameters,” Powder Technology, vol. 356, pp. 310-324, Nov. 2019, doi: 10.1016/J.POWTEC.2019.08.029
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3b83190-1719-4ed3-88c2-9fd44b879af7