Identyfikatory
Warianty tytułu
Niebezpieczeństwo skażenia gleby na skutek nieszczelności ścian zbiorników ściekowych w koksowniach – opis procesu niszczenia betonu
Języki publikacji
Abstrakty
Currently, several coking plants are in operation in Poland, but many are being closed and post-coke-making areas should be revitalized. The article presents results of laboratory tests of corrosive immersion of hardened cement paste in NH4Cl water solution. NH4 + and Cl− ions are present in coke sewage, cause concrete corrosion of wastewater tanks, unsealing them. Thus a real risk of the groundwater contamination caused by toxic components is possible, because of leaky tanks. The depth of corroded zone of hardened cement paste in different time of duration the corrosive immersion of hydrated cement paste in NH4Cl water solution was determined. Results showed the same way of crystalline phases changes in each specimen, but logically the corrosive fronts moved deeper with time. Microstructure undergone transformation. Corrosion products, like gypsum, secondary calcite, thaumasite, secondary ettringite were detected in the outer layers of specimens and compared with the pH of the hardened paste. Thanks to this research, it is possible to create a model of the destruction of reinforced concrete tanks containing a solution with ammonium and chloride ions, which has strong calcium phase dissolving properties.
Obecnie w Polsce działa kilka zakładów koksowniczych, ale wiele jest zamykanych, a tereny pokoksownicze powinny być rewitalizowane. W artykule przedstawiono wyniki badań laboratoryjnych korozyjnej immersji stwardniałego zaczynu cementowego w wodnym roztworze NH4Cl. Jony NH4 + i Cl− występujące w ściekach koksowniczych powodują korozję betonu ścian zbiorników ściekowych, rozszczelniając je. Istnieje zatem realne ryzyko skażenia wód gruntowych toksycznymi składnikami ze względu na nieszczelność zbiorników. Określono głębokość strefy skorodowanej stwardniałego zaczynu cementowego po różnym czasie trwania korozyjnej immersji zhydratyzowanego zaczynu cementowego w wodnym roztworze NH4Cl. Wyniki wykazały ten sam sposób zmian faz krystalicznych w każdej próbce, ale fronty korozyjne przesuwały się głębiej wraz z wydłużaniem się czasu immersji. Mikrostruktura uległa przekształceniu. Produkty korozji, takie jak gips, wtórny kalcyt, thaumasyt i wtórny ettringit, zostały wykryte w zewnętrznych warstwach próbek i porównane z pH stwardniałego zaczynu. Dzięki tym badaniom możliwe jest stworzenie modelu niszczenia zbiorników żelbetowych zawierających roztwór z jonami NH4 + i Cl−, który ma silne właściwości rozpuszczające fazę wapniową.
Wydawca
Czasopismo
Rocznik
Tom
Strony
68--78
Opis fizyczny
Bibliogr. 61 poz., fot., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Faculty of Civil Engineering, Gliwice, Poland
Bibliografia
- [1] H. I. Abdel-Shafy, M. S. M. Mansour. 2016. “A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation.” Egyptian Journal of Petroleum 25(1): 107–123. DOI: 10.1016/j.ejpe.2015.03.011.
- [2] C. Walsh, P. Thornley. 2012. “The Environmental Impact and Economic Feasibility of Introducing an Organic Rankine Cycle to Recover Low Grade Heat During the Production of Metallurgical Coke.” Journal of Cleaner Production 34: 29–37. DOI: 10.1016/j.jclepro.2011.12.024.
- [3] M. K. Ghose. 2002. “Complete Physico-Chemical Treatment for Coke Plant Effluents.” Water Research 36(5): 1127–1134. DOI: 10.1016/S0043-1354(01)00328-1.
- [4] R. W. Dunlap, F. C. McMichael. 1976. “Reducing Coke Plant Effluent.” Environmental Science and Technology 10(7): 654–657. DOI: 10.1021/es60118a009.
- [5] A. Hołtra, D. Zamorska-Wojdyła. 2020. “The Pollution Indices of Trace Elements in Soils and Plants Close to the Copper and Zinc Smelting Works in Poland’s Lower Silesia.” Environmental Science and Pollution Research 27: 16086–16099. DOI: 10.1007/s11356-020-08072-0.
- [6] K. A. Reynolds, K. D. Mena, C. P. Gerba. 2008. Risk of Waterborne Illness via Drinking Water in the United States. In: D. M. Whitacre (ed.). Reviews of Environmental Contamination and Toxicology. New York: Springer. DOI: 10.1007/978-0-387-71724-1_4.
- [7] S. Sharma, A. Bhattacharya. 2017. “Drinking Water Contamination and Treatment Techniques.” Applied Water Science 7: 1043–1067. DOI: 10.1007/s13201-016-0455-7.
- [8] M. Rachwał, Z. Strzyszcz. 2012. Wpływ przemysłu koksochemicznego na podatność magnetyczną gleb oraz zawartość wielopierścieniowych węglowodorów aromatycznych i metali ciężkich w glebach. Zabrze: Instytut Podstaw Inżynierii Środowiska Polskiej Akademii Nauk.
- [9] R. Bigda, W. Urbańczyk, A. Mianowski, A. Sobolewski. 2017. “Emission of Polychlorinated Dibenzo-p-Dioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) from Underfiring System of Coke Oven Battery.” Journal of Ecological Engineering 18(6): 21–29. DOI: 10.12911/22998993/76833.
- [10] E. Zajusz-Zubek, T. Radko, A. Mainka. 2017. “Fractionation of Trace Elements and Human Health Risk of Submicron Particulate Matter (PM1) Collected in the Surroundings of Coking Plants.” Environmental Monitoring and Assessment 189: 389. DOI: 10.1007/s10661-017-6117-x.
- [11] M. Kosewska, B. Mertas. 2008. „Polski przemysł koksowniczy w latach 1997– 2007”. Karbo 3: 110–115.
- [12] H. Machowska. 2011. „Przemysł koksowniczy w aspekcie ochrony środowiska”. Proceedings of ECOpole 5(1): 269–274.
- [13] A. Sobolewski. 2018. Koksownictwo na ziemiach polskich na progu odzyskania niepodległości. https://arch.itpe.pl/wp-content/uploads/2018/10/Sobolewski- Koksownictwo-na-ziemiach-polskich.pdf (access: 1.09.2018).
- [14] P. Stępiński. 2018. Polska eksportuje coraz więcej koksu metalurgicznego. https://biznesalert.pl/polska-wegiel-koksujacy-eksport/ (access: 14.12.2018).
- [15] http://www.sitg.rybnik.pl/kopalnie-zlikwidowane-w-rop/czerwionka_leszczyny-debiensko.php (access: 10.01.2011).
- [16] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. OJ L 152.
- [17] EEA. 2018. Environmental Pressures of Heavy Metal Releases from Europe’s Industry. https://www.eea.europa.eu/themes/industry/industrial-pollutionin-europe/heavy-metal-pollution (access: 24.05.2018).
- [18] L. Sun, X. Liao, X. Yan, G. Zhu, D. Ma. 2014. “Evaluation of Heavy Metal and Polycyclic Aromatic Hydrocarbons Accumulation in Plants from Typical Industrial Sites: Potential Candidate in Phytoremediation for Co-Contamination.” Environmental Science and Pollution Research 21(12): 12494–12504. DOI: 10.1007/s11356-014-3171-6.
- [19] T. Dziok, A. Strugała, A. Włodek. 2019. “Studies on Mercury Occurrence in Inorganic Constituents of Polish Coking Coals.” Environmental Science and Pollution Research 26(9): 8371–8382. DOI: 10.1007/s11356-018-1667-1.
- [20] B. Słomka-Słupik. 2012. Analiza oddziaływania czynników agresywnych na beton obiektów oczyszczalni ścieków. Praca doktorska. Gliwice: Politechnika Śląska.
- [21] P. K. Govil, J. E. Sorlie, N. N. Murthy, D. Sujatha, G. L. Reddy, K. Rudolph-Lund, A. K. Krishna, K. Rama Mohan. 2008. “Soil Contamination of Heavy Metals in the Katedan Industrial Development Area, Hyderabad, India.” Environmental Monitoring and Assessment 140(1–3): 313–323. DOI: 10.1007/s10661-007-9869-x.
- [22] A. Kaur, S. Vats, S. Rekhi, A. Bhardwaj, J. Goel, R. S. Tanwar, K. K. Gaur. 2010. “Physico-Chemical Analysis of the Industrial Effluents and Their Impact on the Soil Microflora.” Procedia Environmental Sciences 2: 595–599. DOI: 10.1016/j.proenv.2010.10.065.
- [23] I. Panagopoulos, A. Karayannis, K. Kollias, A. Xenidis, N. Papassiopi. 2015. “Investigation of Potential Soil Contamination with Cr and Ni in Four Metal Finishing Facilities at Asopos Industrial Area.” Journal of Hazardous Materials 281: 20–26. DOI: 10.1016/j.jhazmat.2014.07.040.
- [24] R. K. Yadav, P. S. Minhas, K. Lal, R. K. Chaturvedi, G. Yadav, T. P. Verma. 2015. “Accumulation of Metals in Soils, Groundwater and Edible Parts of Crops Grown under Long-Term Irrigation with Sewage Mixed Industrial Effluents.” Bulletin of Environmental Contamination and Toxicology 95: 200–206. DOI: 10.1007/s00128-015-1547-z.
- [25] Y. Jabali, M. Millet, M. El-Hoz. 2018. “Determination of 16 Polycyclic Aromatic Hydrocarbons (PAHs) in Surface and Groundwater in North Lebanon by Using SPME Followed by GC–ITMS/MS.” Euro-Mediterranean Journal for Environmental Integration 3: 24. DOI: 10.1007/s41207-018-0066-9.
- [26] R. E. Haouti, Z. Anfar, S. Et-Taleb, M. Benafqir, S. Lhanafi, N. E. Alem. 2018. “Removal of Heavy Metals and Organic Pollutants by a Sand Rich in Iron Oxide.” Euro-Mediterranean Journal for Environmental Integration 3: 17. DOI: 10.1007/s41207-018-0058-9.
- [27] V. Rana, S. K. Maiti. 2018. “Metal Accumulation Strategies of Emergent Plants in Natural Wetland Ecosystems Contaminated with Coke-Oven Effluent.”Bulletin of Environmental Contamination and Toxicology 101: 55–60. DOI: 10.1007/s00128-018-2354-0.
- [28] A. Boujghad, A. Bouabdli, B. Baghdad. 2019. “Groundwater Quality Evaluation in the Vicinity of the Draa Sfar Mine in Marrakesh, Morocco.” Euro-Mediterranean Journal for Environmental Integration 4: 12. DOI: 10.1007/s41207-018-0096-3.
- [29] W. E. Magowo, C. Sheridan, K. Rumbold. 2020. “Global Co-Occurrence of Acid Mine Drainage and Organic Rich Industrial and Domestic Effluent: Biological Sulfate Reduction as a Co-Treatment-Option.” Journal of Water Process Engineering 38: 101650. DOI: 10.1016/j.jwpe.2020.101650.
- [30] S. Sayo, J. M. Kiratu, G. S. Nyamato. 2020. “Heavy Metal Concentrations in Soil and Vegetables Irrigated with Sewage Effluent: A Case Study of Embu Sewage Treatment Plant, Kenya.” Scientific African 8: e00337. DOI: 10.1016/j.sciaf.2020.e00337.
- [31] L. Savignan, S. Faucher, P. Chéry, G. Lespes. 2021. “Platinum Group Elements Contamination in Soils: Review of the Current State.” Chemosphere 271: 129517. DOI: 10.1016/j.chemosphere.2020.129517.
- [32] I. Biczók. 1967. Concrete Corrosion and Concrete Protection. New York: Chemical Publishing Company.
- [33] H. F. W. Taylor. 1997. Cement Chemistry. London: Thomas Telford Publishing.
- [34] B. Cwalina. 2008. “Biodeterioration of Concrete.” Architecture Civil Engineering Environment 1(4): 133–140.
- [35] M. O’Connel, C. McNally, M. G. Richardson. 2010. “Biochemical Attack on Concrete in Wastewater Applications: A State of the Art Review.” Cement and Concrete Composites 32(7): 479–485. DOI: 10.1016/j.cemconcomp.2010.05.001.
- [36] W. Kurdowski. 2004. “The Protective Layer and Decalcification of C–S–H in the Mechanism of Chloride Corrosion of Cement Paste.” Cement and Concrete Research 34(9): 1555–1559. DOI: 10.1016/j.cemconres.2004.03.023.
- [37] B. Gil, B. Słomka-Słupik, K. Kowalska, K. Jasiński. 2018. “Analysis of Concrete Corrosion of Manhole Located near Source of Odorous Emission.” Architecture, Civil Engineering, Environment 11(4): 93–104. DOI: 10.21307/acee-2018-057.
- [38] L. Coppola, T. Bellezze, A. Belli, M. C. Bignozzi, F. Bolzoni, A. Brenna, M. Cabrini, S. Candamano, M. Cappai, D. Caputo, M. Carsana, L. Casnedi, R. Cioffi, O. Cocco, D. Coffetti, F. Colangelo, B. Coppola, V. Corinaldesi, F. Crea, E. Crotti, V. Daniele, S. De Gisi, F. Delogu, M. V. Diamanti, L. Di Maio, R. Di Mundo, L. Di Palma, J. Donnini, I. Farina, C. Ferone, P. Frontera, M. Gastaldi, Ch. Giosuè, L. Incarnato, B. Liguori, F. Lollini, S. Lorenzi, S. Manzi, O. Marino, M. Marroccoli, M. C. Mascolo, L. Mavilia, A. Mazzoli, F. Medici, P. Meloni, G. Merlonetti, A. Mobili, M. Notarnicola, M. Ormellese, T. Pastore, M. Pia Pedeferri, A. Petrella, G. Pia, E. Redaelli, G. Roviello, P. Scarfato, G. Scoccia, G. Taglieri, A. Telesca, F. Tittarelli, F. Todaro, G. Vilardi, F. Yang. 2018. “Binders Alternative to Portland Cement and Waste Management for Sustainable Construction – Part 2.” Journal of Applied Biomaterials and Functional Materials 16(4): 207–221. DOI: 10.1177/2280800018782852.
- [39] Y. Song, E. Wightman, J. Kulandaivelu, H. Bu, Z. Wang, Z. Yuan, G. Jiang. 2020. “Rebar Corrosion and Its Interaction with Concrete Degradation in Reinforced Concrete Sewers.” Water Research 182: 115961. DOI: 10.1016/j.watres.2020.115961.
- [40] A. Zybura. 2007. “Analysis of Chloride Migration in Concrete Based on Multicomponent Medium Theory.” Archives of Civil Engineering 53(1): 131–150.
- [41] W. Kurdowski. 2014. Cement and Concrete Chemistry. Dordrecht: Springer.
- [42] J. L. Zhao, Y. X. Jiang, B. Yan, C. Wei, L. J. Zhang, G. G. Ying. 2014. “Multispecies Acute Toxicity Evaluation of Wastewaters from Different Treatment Stages in a Coking Wastewater‐Treatment Plant.” Environmental Toxicology and Chemistry 33(9): 1967–1975. DOI: 10.1002/etc.2638.
- [43] M. Janosz-Rajczyk. 2004. Biologiczne metody usuwania azotu z wybranych wód odpadowych. Częstochowa: Wydawnictwo Politechniki Czestochowskiej.
- [44] K. Mielczarek, J. Bohdziewicz, A. Kwarciak-Kozłowska, I. Korus. 2012. “Modeling of Ultrafiltration Process Efficiency in Coke Plant Wastewater Treatment with the Use of Industrial Membranes.” Ecological Chemistry and Engineering: A 19(4–5): 457–470. DOI: 10.2428/ecea.2012.19(04)048.
- [45] M. K. Ghose, S. R. Majee, P. K. Sinha. 2007. “Monitoring and Assessment of Impact on Air Environment Caused by Coke Plant Operations in India.” International Journal of Environmental Studies 56(4): 475–482. DOI: 10.1080/00207239908711217.
- [46] W. Zhao, X. Huang, D. Lee. 2009. “Enhanced Treatment of Coke Plant Wastewater Using an Anaerobic–Anoxic–Oxic Membrane Bioreactor System.” Separation and Purification Technology 66(2): 279–286. DOI: 10.1016/j.seppur.2008.12.028.
- [47] I. Machón, H. López, J. Rodríguez-Iglesias, E. Marañón, I. Vázquez. 2007. “Simulation of a Coke Wastewater Nitrification Process Using a Feed-Forward Neuronal Net.” Environmental Modelling and Software 22(9): 1382–1387. DOI: 10.1016/j.envsoft.2006.10.001.
- [48] J. Liu, B. Wang, W. Li, Ch. Jin, X. Cao, L. Wang. 1996. “Removal Nitrogen from Coal Gasification and Coke Plant Wastewaters in A/O Submerged Biofilm- Activated Sludge (SBF-AS) Hybrid System.” Water Science and Technology 34(10): 17–24. DOI: 10.1016/S0273-1223(96)00692-0.
- [49] F. A. Rodrigues, I. Joekes. 2011. “Cement Industry: Sustainability, Challenges and Perspectives.” Environmental Chemistry Letters 9: 151–166. DOI: 10.1007/ s10311-010-0302-2.
- [50] JRC Technical Report. 2020. Expected Implications of Climate Change on the Corrosion of Structures. EUR 30303 EN. Publications Office of the EU. JRC121312. https://op.europa.eu/pl/publication-detail/-/publication/c4074a50-cafd-11ea-adf7-01aa75ed71a1/language-en/format-PDF/source-181990837 (access: 5.02.2025).
- [51] J. P. Camps, R. Jauberthie, F. Rendell. 1999. The Influence of Surface Absorption on Sulphate Attack. In: R. K. Dhir, M. J. McCarthy Concrete Durability and Repair Technology. London: Thomas Telford Publishing.
- [52] J. M. Torrenti, O. Didry, J. P. Ollivier, F. Plas. 1999. La dégradation des bétons: Couplage fissuration-dégradation chimique. Paris: Hermes Science Publications.
- [53] B. Słomka-Słupik, J. Podwórny, M. Staszuk. 2018. “Corrosion of Cement Pastes Made of CEM I and CEM III/A Caused by a Saturated Water Solution of Ammonium Chloride after 4 and 25 Days of Aggressive Immersion.” Construction and Building Materials 170: 279–289. DOI: 10.1016/j.conbuildmat.2018.03.073.
- [54] C. Carde, G. Escadeillas, G., A. H. Francois. 1997. “Use of Ammonium Nitrate Solution to Simulate and Accelerate the Leaching of Cement Pastes Due to Deionized Water.” Magazine of Concrete Research 49(181): 295–301. DOI: 10.1680/macr.1997.49.181.295.
- [55] F. H. Heukamp, F. J. Ulm, J. T. Germaine. 2001. “Mechanical Properties of Calcium- Leached Cement Pastes: Triaxial Stress States and the Influence of the Pore Pressures.” Cement and Concrete Research 31(5): 767–774. DOI: 10.1016/S0008-8846(01)00472-0.
- [56] B. Słomka-Słupik, A. Zybura. 2010. “Microstructure of Decalcified Cement Paste.” Cement, Wapno, Beton 15(6): 333–339.
- [57] M. Mainguy, C. Tognazzi, J. M. Torrenti, F. Adenot. 2000. “Modelling of Leaching in Pure Cement Paste and Mortar”. Cement and Concrete Research 30(1): 83–90. DOI: 10.1016/S0008-8846(99)00208-2.
- [58] U. Schneider, S. W. Chen. 2005. “Deterioration of High-Performance Concrete Subjected to Attack by the Combination of Ammonium Nitrate Solution and Flexure Stress.” Cement and Concrete Research 35(9): 1705–1713. DOI: 10.1016/j.cemconres.2004.11.011.
- [59] Z. Song, L. Jiang, H. Chu. 2017. “Impact of Calcium Leaching on Chloride Diffusion Behavior of Cement Pastes Exposed to Ammonium Chloride Aqueous Solution.” Construction and Building Materials 153: 211–215. DOI: 10.1016/j.conbuildmat.2017.07.094.
- [60] X. Wang, Z. Pan, X. Shen, W. Liu. 2016. “Stability and Decomposition Mechanism of Ettringite in Presence of Ammonium Sulfate Solution.” Construction and Building Materials 124: 786–793. DOI: 10.1016/j.conbuildmat.2016.07.135.
- [61] Y. Shimada, J. F. Young. 2004. “Thermal Stability of Ettringite in Alkaline Solutions at 80°C.” Cement and Concrete Research 34(12): 2261–2268. DOI: 10.1016/j.cemconres.2004.04.008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3b5db36-0693-4497-98ad-bed787ae7af8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.