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Abstract

As an important component of the fuel injection system, the fuel injector is crucial for ensuring the power, economy, 
and emissions for a whole ME (machine electronically-controlled) marine diesel engine. However, injectors are most 
prone to failures such as reduced pressure at the opening valve, clogged spray holes and worn needle valves, because 
of the harsh working conditions. The failure characteristics are non-stationary and non-linear. Therefore, to efficiently 
extract fault features, an improved refined composite multi-scale dispersion entropy (IRCMDE) is proposed, which 
uses the energy distribution of sampling points as weights for coarse-grained calculation, then fast correlation-based 
filter(FCBF) and support vector machine (SVM) are used for feature selection and fault classification, respectively. The 
experimental results from a MAN B&W 6S35ME-B9 marine diesel engine show that the proposed algorithm can achieve 
92.12% fault accuracy for injector faults, which is higher than multiscale dispersion entropy (MDE), refined composite 
multiscale dispersion entropy (RCMDE) and multiscale permutation entropy (MPE). Moreover, the experiment has 
also proved that, due to the double-walled structure of the high-pressure fuel pipe, the fuel injection pressure signal is 
more accurate than the vibration signal in reflecting the injector operating conditions.
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INTRODUCTION
A diesel engine has the advantages of high reliability, 

high fuel economy and easy operations; it has been the main 
propulsion source for marine ships [1]. For a diesel engine, 
the fuel injection system is one of most important parts, its 
safe and reliable operation is crucial to ensuring the power, 
economy, and reliability of the whole engine [2]. With the 
development of technology and more stringent emission 
regulations, high pressure common rail fuel injection systems 
have become a hot research topic because of their good 
performance, in terms of power, economy and emissions 
[3]. The MAN B&W ME-type diesel engine has the largest 

scale of application of all marine two-stroke diesel engines. 
However, injector failure occurs at a higher rate, affecting 
the energy efficiency and emission performance of diesel 
engines [4]. Therefore, fault diagnosis in diesel fuel injectors 
is crucial to ensure the safe and efficient operation of marine 
diesel engines. 

For the process of fault diagnosis, there are mainly three 
steps: signal acquisition, feature extraction, and pattern 
classification. Many researches have conducted fault diagnosis 
of diesel engines. Thurson et al. [5] measured the exhaust 
temperature to diagnose faults in diesel engine fuel injectors. 
Li et al. [6] analysed the cylinder pressure to reflect the whole 
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combustion process and identify the malfunctions of diesel 
engines. Zhang et al. [7] used the instantaneous crankshaft 
speed to realise the fault diagnosis of uneven firing intervals 
of V-type marine diesel engines. Yang et al. [8] collected 
vibration signals by installing a transducer on a fuel injection 
pump, and then used discriminative non-negative matrix 
factorisation and KNN classifier to realise the fault diagnosis 
of diesel engines. Ftoutou et al.[9] measured vibration signals 
on the cylinder block and used modified S-transform, two-
dimensional non-negative matrix factorisation, and three 
fuzzy clustering algorithms to realise the fault diagnosis of 
a diesel engine’s injection faults. Ramteke et al. [10] used 
signal processing techniques to extract fault-related features 
from vibration signals, and then monitored the effect of 
liner scuffing faults. Alireza et al. [11] presented a condition 
monitoring and combustion fault detection method based 
on the vibration signal obtained from both intake manifold 
and cylinder heads. Although vibration signals are easy 
to measure, they are more susceptible to contamination, 
especially under weak faults. For a marine two-stoke diesel 
engine, the vibration on a ship is inherently serious, so the 
vibration signals measured from the surface of diesel engines 
may not be accurate for fault diagnosis. Similarly for the fuel 
injection system, the fuel injection pipeline is relatively thick 
and may be a double-walled pipe, which makes it difficult to 
measure the vibration signal on the surface of the pipeline to 
reflect the pressure fluctuation inside the pipeline. Therefore, 
in order to obtain better fault diagnosis accuracy, our research 
measures the fuel pressure and vibration signals of the high-
pressure fuel line at the same time, and compares the two 
signals for analysis. 

 When acquiring the original fluctuation signal, the next 
step is feature extraction. Many methods had been used to 
extract the fault features, mainly including time-domain 
analysis [12], frequency-domain analysis [13], and time-
frequency analysis [14]. Because the pressure and vibration 
signals of high pressure pipes have nonlinear and non-
stationary characteristics, nonlinear dynamic-based entropy 
methods are a powerful tool for extracting these features and 
they have been widely used in the field of fault diagnosis, 
e.g. approximate entropy (AE), sample entropy (SE), fuzzy 
entropy (FE), and permutation entropy (PE). Chen et al. 
[15] used SE for rolling bearing fault diagnosis. Shang et al. 
[16] used modified SE for the fault diagnosis of lithium-ion 
battery strings. Zhu et al. [17] used the FE to extract fault 
features. Ma et al. [18] used fuzzy distribution entropy for fault 
diagnosis in rotating machinery. However, these methods 
made comparisons between data, which may have reduced 
the calculation efficiency. Ma et al. [19] used PE for the early 
fault diagnosis of rotating machinery. Wu et al. [20] used 
multi-scale permutation entropy (MPE) for the fault diagnosis 
of bearings. However, PE values are relatively sensitive to 
noise [21]. In order to extract fault features more efficiently, 
Azami et al. [22] proposed dispersion entropy (DE). Gu et 
al. [23] used DE to realise the misfiring diagnosis of diesel 
engines. Yan et al. [24] used multi-scale dispersion entropy 
(MDE) to extract multidimensional fault characteristics and 

validated their effectiveness by experiments. Ke et al. [25] 
used hierarchical fluctuation dispersion entropy for fault 
diagnosis in common-rail injectors. Dhandapani et al. [26] 
used a generalised Gaussian distribution to refine composite 
multiscale dispersion entropy for the diagnosis of rolling 
bearings. Inspired by these references, we decided to use MDE 
to extract fault features from the pressure signal. However, the 
coarse-graining process in MDE has two main defects. Firstly, 
when the scale factor increases, the data length is reduced, 
and this reduces the reliability of the entropy value. Secondly, 
there are no overlap segments, and calculating the average 
of each segment will cause the loss of potentially useful 
information [27]. The coarse-graining process of refined 
composite MDE can solve these problems, to some extent, 
but it only considers the first-order moment in the coarse-
graining process. Therefore, in this research, we propose an 
improved refined composite MDE (IRCMDE) to extract more 
hidden features for fault diagnosis, in which the second-order 
moment is used. After using IRCMDE, the fault features of 
the pressure signal can be extracted. However, these fault 
features are large and so feature reduction is needed for the 
improvement of calculation efficiency. Generally speaking, 
distance measures, dependency measures, consistency 
measures and information measures are used to evaluate 
the quality of a feature [28]; mutual information is most 
frequently used to measure the correlation and redundancy 
of features. The fast correlation-based filter (FCBF) has 
faster calculation efficiency and robustness, compared to the 
relevance filter, minimum redundancy maximum relevance 
(mRMR) and conditional mutual information maximisation 
(CMIM). Therefore, this study uses FCBF for feature selection 
and then constructs the feature set. After feature extraction 
and selection, state classification is the final step in fault 
diagnosis. Support vector machine (SVM) is one of the most 
commonly used fault classification methods, showing great 
advantages when fault sample data is insufficient. Zhang et 
al. [29] proposed the support vector machine (SVM)-based 
intelligent fault diagnosis method and obtained good results 
under different fault degrees at various engine speeds and load 
conditions. Zhao et al. [30] proposed PSO-SVM, to realise the 
fault classification. SVM is selected in this research, to classify 
the fault mode. Simulations and experiments were conducted 
to illustrate the diagnosis performance and generalisation 
ability of the proposed method.

The rest of this paper is organised as follows: in Section 2, 
theoretical analysis of IRCMDE is introduced. In Section 3, 
the influence of parameter changes on the IRCMDE value is 
discussed in detail and the effectiveness of the algorithm is 
demonstrated through simulation signals. In Section 4, the 
whole fault diagnosis procedure is proposed. In Section 5, 
experiments are employed to verify the proposed method. 
The conclusion is summarised in Section 6. 
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IMPROVED REFINED COMPOSITE 
MULTISCALE DISPERSION ENTROPY

For the original time series with N points, the length of 
the coarse-grained time series at scale factor τ is equal to N∕τ 
after using the MDE method, as shown in Eq. (1). So, when 
a larger scale factor is used, the generated time series will 
become shorter. Besides, MDE divides the time series into 
non-overlapping segments of equal length and then calculates 
the average of all data points in each segment, which will 
inevitably cause the loss of potentially useful information. 
So, RCMDE is proposed to overcome the above defects; there 
two main steps to calculate the RCMDE value. 

                 (1)

Step 1. For a given time series u with length N, its k-th 
coarse-grained time sequence  
can be calculated by Eq. (2).

                              (2)

Step 2. For each scale τ, the DE of each coarse-grained 
time series  is calculated (the detailed 
calculation can be found in [23]). Then these DE values are 
averaged according to Eq. (3). 

                         
     (3)

However, the RCMDE algorithm still uses the original 
coarse-grained mean processing, which affects the accuracy 
of entropy values. Inspired by this, the energy distributions 
between sampling points (x1, x2,..., xn) are used as coefficients 
to fuse the corresponding time scale factors  and preserve 
the impact characteristics of the original signal to the greatest 
extent possible. The calculation flowchart of IRCMDE is 
shown in Fig.1. For the IRCMDE method, there are two main 
steps to calculate the IRCMDE value.

Step 1. For a given time series u with length N, its k-th 
coarse-grained time sequence 
can be calculated by Eq. (4).

       (4)

Step 2. Calculate the DE for each   
sequence separately and then the final IRCMDE value for 
scale factor τ can be calculated by Eq. (5). 

       (5)

Fig. 1. the flowchart of the IRCMDE method

PARAMETER SELECTION AND ANALYSIS

When using the IRCMDE method to analyse data, there 
are five main parameters which need to be set in advance: 
signal length N, embedding dimension m, the number of 
classes c, time delay d and scale factor τ. According to the 
relevant reference, the time delay is usually selected as 1, 
which has no influence on the computational efficiency and 
reliability of the DE value. The scale factor τ is selected as 18, 
which will fully extract fault information at different scales. 
Because white Gaussian noise (WGN) and 1/f noise are two 
commonly occurring noises in nature, we decide to analyse 
the impact of the other four parameters on the DE results 
by using these two signals. The coefficient of variation (CV) 
value and Euclidean distance (ED) value are calculated for 
evaluating the effectiveness of the DE results. The CV equation 
is defined as standard deviation divided by the mean and ED 
value, as shown in Eq. (6).

              (6)

where DE1 and DE2 denote WGN and 1/f noise IRCMDE 
values, respectively.
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PARAMETER OF SIGNAL LENGTH

In order to analyse the influence of signal length N on the 
DE value, we select 20 times WGN and 1/f noise with lengths 
of 512, 1024, 2048 and 4096, respectively, for calculating the 
IRCMDE value. The results are shown in Fig. 2, Table 1, Table 
2 and Table 3. Fig. 2 shows that the entropy values of both 
WGN and 1/f noise are very similar, which indicates that the 
signal length has little influence on the multiscale entropy 
value. Moreover, it can be seen from Tables 1-3 that, with 
increasing signal length, the CV value becomes smaller, the 
ED value becomes larger and time become longer. Overall, 
it is more reasonable when the signal length is 2048, so N is 
chosen to be equal to 2048 in this study. 

Fig. 2. IRCMDE value of different signal lengths

Table 1. CV value of different data lengths

Data length 512 1024 2048 4096

WGN 0.1732 0.1098 0.0703 0.0536

1/f noise 0.0537 0.0429 0.0224 0.0190

Table 2.Consuming time with different data lengths

Data length 512 1024 2048 4096

WGN 0.0950s 0.0879s 0.1288s 0.2130s

1/f noise 0.0851s 0.1138s 0.1203s 0.2134s

Table 3.  ED value with different data lengths

Data length 512 1024 2048 4096

ED 2.0693 2.6295 2.6430 2.8253

PARAMETER OF EMBEDDING DIMENSION

The embedding dimension m has a great influence on the 
entropy value. If m is too small, the dynamic information 
from the signal may not be detected. If m is too large, the 
small variations in the signal may not be displayed and it is 
also more time-consuming. Therefore, we decided to select m 
values equal to 2, 3, 4 and 5, respectively, for calculating the 
IRCMDE value. The calculation results are shown in Fig. 3, 
Table 4, Table 5 and Table 6. Fig. 3 shows that the entropy value 
will become larger with an increase of embedding dimension 
m. This is because there will be more dispersion patterns 
when m is larger, and so a larger DE value will be produced. 
Moreover, it can be seen from Tables 4-6 that, when m is equal 
to 3, the CV value is relatively lower, the consuming time is 
relatively shorter and the ED value is relatively longer. So, 
an embedding dimension m of 3 was chosen in this study. 

Fig. 3. IRCMDE values of different embedding dimensions

Table 4. CV values of different embedding dimensions

Embedding 
dimension 2 3 4 5

WGN
1/f noise

0.0738 0.0805 0.0552 0.0883

0.0311 0.0258 0.0215 0.0260
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Table 5. Time consumed with different embedding dimensions

Embedding 
dimension 2 3 4 5

WGN
1/f noise

0.0721s 0.1223s 0.4427s 2.2708s

0.0695s 0.1151s 0.4292s 2.2589s

Table 6.   ED values with different embedding dimensions

Embedding 
dimension 2 3 4 5

ED 1.7316 2.5567 3.2294 3.6448

THE NUMBER OF CLASS C 

The parameter c is one of the important parameters 
determining the number of dispersion patterns. When 
c is too small, there are not enough patterns to reflect 
signal information, resulting in two signals with different 
amplitudes being divided into the same class. However, when 
c is too large, the calculation time will become very long 
and the signal may be divided into different classes when 
encountering noise pollution. Therefore, we decided to select 
c equal to 4, 5, 6 and 7, respectively, for calculating IRCMDE 
values. The calculation results are shown in Fig. 4, Table 7, 
Table 8 and Table 9. Fig. 4 shows that the entropy value will 
increase with the increase in class number because there 
will be more possible dispersion patterns under a larger class 
number c. In other words, when c is larger, there will be 
more information which can be extracted, yielding a larger 
DE value. However, when c is larger, the calculation time 
will become longer and the ED value will become shorter. 
Therefore, after comprehensive analysis, a c value of 6 was 
chosen, which is more reasonable. 

Fig.4. IRCMDE values of different class numbers

Table 7. CV values of different class numbers

Class number 4 5 6 7

WGN
1/f noise

0.2603 0.1507 0.0566 0.0495

0.1018 0.0508 0.0284 0.0224

Table 8. Consuming time with different class numbers

Class number 4 5 6 7

WGN
1/f noise

0.0819s 0.1257s 0.1627s 0.2556s

0.1033s 0.1051s 0.1472s 0.1538s

Table 9.  ED values with different class numbers

Class number 4 5 6 7

ED 2.6069 3.5288 2.4144 1.8705

COMPARISON OF IRCMDE, RCMDE, MDE AND MPE

When a fault occurs, the fault signal usually contains 
modulation components. Our research selected five AM-FM 
signals containing different frequencies and amplitudes as 
simulation signals, as shown in Eq. (7) [31]. 

  
(7)

The sample frequency is 2048 Hz, and a, b, and c are 
coefficients forming five different modulation signals, 
which are expressed as a=[0.5,1,1.5,2,2.5], b=[1,2,3,4,5], and 
c=[1,2,3,4,5]. 

The calculation results are shown in Fig 5. It can be seen 
that the DE values of the five signals have obvious intersections 
when using the MDE method. The entropy value of IRCMDE 
and RCMDE are separated on most scales. This indicates that 
multi-scale analysis is very important when evaluating the 
information from practical fault signals, which is beneficial 
for achieving fault diagnosis in mechanical equipment.
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(7)

The sample frequency is 2048 Hz, and a, b, and c are 
coefficients forming five different modulation signals, 
which are expressed as a=[0.5,1,1.5,2,2.5], b=[1,2,3,4,5], and 
c=[1,2,3,4,5]. 

The calculation results are shown in Fig 5. It can be seen 
that the DE values of the five signals have obvious intersections 
when using the MDE method. The entropy value of IRCMDE 
and RCMDE are separated on most scales. This indicates that 
multi-scale analysis is very important when evaluating the 
information from practical fault signals, which is beneficial 
for achieving fault diagnosis in mechanical equipment.

Fig. 5. Entropy values of five modulation signals

When an engine’s fuel injection system appears to have 
faults, the measured signal is often affected by background 
noise. Therefore, five different levels of signal to noise ratio 
(SNR) were used to form a synthetic signal, with the aim 
of further demonstrating the noise reduction ability of the 
proposed algorithm. The SNRs used were: 10, 15, 20 and 25. 
Fig. 6 shows the calculation results of entropy value from the 
four methods, using synthetic signals. It can been seen that, 
when the SNR is different, there are fluctuations and severe 
crossovers between different scales in the IRCMDE, MDE 
and MPE entropy curves, but the IRCMDE entropy is much 
smoother. Therefore, the IRCMDE method has a better noise 
reduction effect and is more suitable for the feature extraction 
of actual signals.

c
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Fig. 6. Entropy values of five modulation signals

THE PROPOSED FAULT DIAGNOSIS 
METHOD

FAST CORRELATION-BASED FILTER FOR FEATURE 
SELECTION 

Fault diagnosis is required after feature extraction. 
However, if all of these features are used, the classification 
accuracy rate may not be high and the calculation time is also 
very long. Therefore, the feature selection method is needed 
for further improving the effectiveness of fault diagnosis. 
Fast correlation-based filter (FCBF) is one of the most widely 
used non-liner correlation measures, which is used for feature 
selection [32]. 

Definition 1. Information entropy solves the measurement 
of complexity of random information variables. If X is a 
discrete signal, then the entropy of X is expressed as: 

                    (8)

Definition 2. The conditional entropy is expressed as the 
conditional probability distribution of the occurrence of 
random variable X when random variable Y occurs alone.

      (9)

Definition 3. Mutual information of discrete signal X and 
Y can be defined as: 

                    (10)

From Eq. (10), it can be seen that the upper limit of I(X,Y) 
is the minimum value between H(X) and H(Y), and its 
lower limit is 0. Due to the significant variation in entropy, 
uncertain entropy values can lead to unreasonable values of 
I(X,Y). Therefore, it is necessary to process the maximum 
information coefficient of I(X,Y) because the maximum 
information coefficient can compensate for the deviation of 

mutual information in the multi value feature, and limit its 
value range to [0, 1]. Therefore, the maximum information 
coefficient of random variables X and Y can be determined 
by the minimum value of H (X) and H (Y), as shown below.

               (11)

Definition 4. Symmetrical uncertainty (SU) is defined as:

                 (12)

In order to reduce the redundancy between signal features, 
the calculation steps of the FCBF method are as follows:

Step 1: Calculation the SUmax(xi,c) value for each feature 
xi, where i the i-th feature and c is the class vector.

Step 2: Delete the irrelevant feature xi, whose SUmax(xi,c)< δ, 
where δ is a predefined threshold.

Step 3. List the remaining features in descending order, 
according to their SUmax value and label the result as Slist. 

Step 4. Define the first element xm in Slist as the 
predominant feature, append xm to sselect and remove it from 
Slist. For the remaining features, calculate the SUmax(xm,xn). 
Remove redundant features based on conditions similar 
to Markov blankets. So, if SUmax(xm,xn)>SUmax(xn,c) and 
SUmax(xm,c)>SUmax(xn,c), remove xn from slist.

Step 5. Regard the remaining feature next to xm in the 
Slist as the new predominant feature and repeat step 4 until 
Slist = ϕ. Finally, the relevant but non-redundant feature set 
sselect is obtained.

SUPPORT VECTOR MACHINE FOR FAULT CONDITION 
RECOGNITION

For an ME marine diesel engine, the fault sample is 
relatively insufficient. SVM as one of the supervised classifiers 
which is especially suitable for small sample cases; it is based 
on the principle of minimising the structural risk in statistical 
learning theory. SVM was originally developed for binary 
classification problems. However, the fault diagnosis of a 
marine diesel engine is usually a multi-classification problem. 
To address this issue, one-verse-one and one-verse-all are 
proposed. According to the literature [33], researchers decided 
to select the style of one-verse-one mode method and optimise 
parameter g and the penalty parameter c through particle 
swarm optimisation (PSO). 

THE PROPOSED FAULT DIAGNOSIS METHOD 

In order to realise the fault diagnosis of an ME diesel 
engine, a novel fault diagnosis method based on IRCMDE, 
FBCF and SVM is proposed in this paper. The flowchart of 
the proposed method is displayed in Fig. 7 and the calculating 
steps of the method are described as follows.

Step 1: Signal acquisition. Installing the relevant transducer 
to collect the signal under different working conditions. In 
this research, we installed a pressure and vibration transducer 
on the high pressure oil pipe of an ME diesel engine.
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Step 2: Feature extraction. The IRCMDE method was used 
to extract the fault feature from the raw signal.

Step 3. Feature selection. The FCBF method was used to 
select the more sensitive features.

Step 4. Condition classification. The SVM method was 
used to classify the fault conditions. 

Fig. 7.  Flowchart of the proposed method

EXPERIMENTAL VERIFICATION

EXPERIMENTAL SETUP DESCRIPTION AND DATA 
COLLECTION

To verify the effectiveness and applicability of the proposed 
method, experiments on an ME diesel engine were conducted. 
The ME diesel engine was located in Shanghai Maritime 
University Automation Engine Room Laboratory, as shown 
in Fig. 8. I was a MAN B&W 6S35ME-B9 type engine and 
the main parameters are listed in Table 10.

Table 10. Main parameters of ME diesel engine

Number Parameter Value

1 Number of strokes 2

2 Firing sequence 1-5-3-4-2-6

3 Rated Power 3570 kW

4 Rated speed 140 r/min

5 Compression ratio 21

6 Cylinder bore/Stoke 350 mm/1550 mm

7 Connecting rod length 1550 mm

8 Intake mode Supercharging cooling

Fig. 8. Experimenalt rig

The fuel injector is the part of the fuel injection system 
most prone to malfunction, therefore three common 
injector failures, including reduced pressure at the opening 
valve, clogged spray holes and worn needle valves, were 
experimentally studied. In general, the vibration signal of 
the high-pressure fuel line was measured to obtain fault 
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information [34]. However, for ME diesel engines, the high-
pressure fuel pipe is a double-walled pipe with a channel 
between the walls for oil return, in case of leakage. In 
addition, because the pressure in high-pressure oil pipes 
can sometimes reach 100 MPa, a double-walled structure 
is also beneficial for increasing safety. This double-wall 
construction leads to the possibility of inaccurate fault 
diagnosis by measuring the vibration signal on the outer wall 
of the high-pressure fuel pipe. Therefore, in this experiment, 
the pressure signal was measured by drilling holes in the 
inner wall of the high-pressure oil pipe. The pressure sensor 
model used for the experiment was a Kistler 4067E3000DS 
with a maximum measurement range of 300 MPa. For the 
comparison study, the vibration signals of the 
inner and outer walls of the high-pressure fuel 
line were measured simultaneously. During 
the experiment, in order to improve safety 
and prevent the high-pressure oil pipe from 
bursting at the perforation, woven bags were 
used for wrapping, as shown in the red box 
in Fig. 8(a). Fig. 8(b) is the detailed sensor 
installation location diagram, including one 
pressure sensor and two vibration sensors. 
The signals are collected by a PC via a COINV 
system. The speed of the main bearing was 
set at 90 r/min and 30% rated power, and the 
sampling rate was 2048 Hz. The sampling time 
for each condition lasted 50 s, i.e. there were 
50*2048 points under each working condition. 
In order to validate the proposed method, all of 
the 102,400 points were selected as the sample 
sets. According to the analysis in Section 3, 
there are 2048 points per sample, so there are 
50 samples per working state. Moreover, we 
randomly selected 30 samples as the training 
set and the remaining 20 samples as the test 
set. Thereby, a total of 120 training samples 
and 80 testing samples could be acquired. A 
detailed description of the fuel injector working 
condition is shown in Table 11. 

Table 11. Detailed description of the fuel injector working 
condition

Working condition Training 
samples

Testing 
samples Label

Normal 30 30 1

Low valve opening 
pressure 30 30 2

Orifice blockage 30 30 3

Needle valve wear 30 30 4

The time-domain waveform of each working condition 
is shown in Fig. 9-12 and each state contains 3 graphics, 

including pressure waveform, inner wall vibration waveform 
and outer wall vibration waveform, from top to bottom. It 
can be seen that different working conditions have similar 
waveforms, so it is necessary to apply the intelligent fault 
diagnosis method to accurately identify different working 
conditions. Moreover, the instantaneous pressure of fuel 
injection can reach up to 70 MPa and the vibration is also the 
most severe at this time. However, based on our experience, 
the vibration signal of the outer wall is more susceptible to 
external interference and contains more high-frequency noise. 
In order to verify which type of signal enables better injector 
fault diagnosis, a comparative analysis was carried out later, 
using pressure signals and vibration signals, respectively.

Fig. 10. Time domain waveform of signal under low valve opening pressure

Fig. 9. Time domain waveform of signal under normal condition
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Fig. 11. Time domain waveform of signal under orifice blockage

Fig. 12. Time domain waveform of signal under needle valve wear

DIAGNOSIS RESULTS AND ANALYSIS

According to the flowchart of the proposed method in 
Fig 7, IRCMDE is first used to extract the fault features from 
the fuel injection pressure signal and the calculation results 
of each extracted multi-scale features is shown in Fig. 13. It 
can be seen that the entropy values are different under most 
working conditions. However, in the cases of condition 1 and 
condition 3, the entropy curve shows a cross phenomenon 
because, when the injector nozzle is blocked, it will cause an 
increase in valve opening pressure. However, the blockage 
of the nozzle will generally be accompanied by a decrease in 
valve opening spring stiffness, both of which cause the valve 
opening pressure to be consistently normal. Therefore, the 
entropy value of the pressure wave is also approximately the 
same. Meanwhile, condition 4 has the maximum entropy 

value at all scales, indicating that needle 
valve wear faults contain more information. 
In order to verify the effect of needle valve 
wear on injector performance, the injector was 
tested on the injector opening pressure test 
rig and found to have very large fluctuations 
in opening pressure. This unstable operating 
condition resulted in a larger entropy value 
as well.

Because each sample has eighteen features, 
some of them may affect classification accuracy, 
due to interference. It is necessary to reduce the 
dimension of the feature set. Therefore, FCBF 
is used to select the main features according 
to their superiority and correlations. As a 
comparison, three entropy methods including 
RCMDE, MDE and MPE are also calculated, 
and FCBF is used to calculate the sensitivity 
on all the scales of the above methods. Table 
12 shows the main features of the different 
methods. Then, the selected training sample 
of entropy values were used to train the SVM 
model and the selected testing sample entropy 
values were used to test the model. Before 
training SVM, the parameters of penalty factor 
c and kernel function parameter g need to be 
set. Here, we decides to use PSO to obtain 
the optimal parameters and the PSO theory 
can be found in the literature [35]. After 60 
iterations, the optimal parameters c=10 and 
g=1 were obtained. The detailed fault diagnosis 
results can be seen from the confusion matrix, 
as is shown in Fig. 14. The proposed method 
of IRCMDE has the highest fault diagnosis 
rate, with an accuracy rate of 91.25%. The 
accuracy rates of the other three methods are 
88.75%, 81.25% and 78.75%, respectively. As 
can been seen from the four methods above, 

fault condition 2 had the lowest classification accuracy. This 
is because, after long-term operation of marine diesel engines 
and frequent use of heavy oil, the internal spring stiffness 
of the fuel injector will naturally decrease, resulting in a 
lower valve opening pressure. So the failure of reducing valve 
opening pressure can easily cause confusion with other faults.

Table 12. Main features of the different methods.

Method Feature scale

IRCMDE 18 6 10 2

RCMDE 11 18 4 7

MDE 8 10 3 6

MPE 5 16 8 12
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Fig. 13. IRCMDE values under four working conditions.

To further validate the effectiveness of the proposed 
algorithm, the fault diagnosis rate of each method was 
calculated twenty times, and the results are shown in Fig. 15. 
Five comparative indexes of the four methods in 20 trials are 
listed in Table 13, which includes the maximum, minimum, 
mean, SD and calculation time of accuracy for 20 trials. From 
Fig. 15 and Table 13, it can be concluded that the proposed 
method has the best accuracy and the SD value is relatively 
smaller. That indicates that the proposed method not only has 

better classification accuracy, but is also more stable. There 
are several reasons for the illustrated comparative results. 
Firstly, PE is greatly affected by the signal amplitude while 
DE improves stability through nonlinear mapping. Secondly, 
IRCMDE and RCMDE fully consider the relationship between 
adjacent elements at each scale and generate more template 
vectors for short-term time series. Besides this, IRCMDE also 
considers the relative energy between the signals.

Fig. 15. Accuracy of four methods

Fig. 14. Multi-class confusion matrix of different methods. 
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Table 13. Comparative indexes of different methods

Method
Comparative indexes

Maximum Minimum Mean SD

IRCMDE 93.75 90.0 92.12 1.0512

RCMDE 91.25 87.5 89.50 1.3079

MDE 83.75 80.0 81.75 1.7396

MPE 81.25 77.5 78.94 1.6351

COMPARATIVE ANALYSIS OF USING PRESSURE AND 
VIBRATION SIGNALS

It can be seen, from Fig. 9 to 12, that, when the pressure 
in the high-pressure oil pipe increases, the vibration signal 
will also be significantly enhanced. However, the vibration 
signal is more susceptible to the influence of other cylinders. 
For example, there are two significant increases in the 
vibration signal waveform within a working cycle. Because 
our experiment was conducted on cylinder 1 at a speed of 90 r/
min, it can be concluded that the most obvious vibration is the 
process of fuel injection and ignition in cylinder 1. According 
to the ignition sequence 1-5-3-6-2-4, the second most obvious 
vibration signal is the process of fuel injection and ignition 
in cylinder 2. As a comparison, inner wall vibration signals 
and outer wall vibration signals of the double-walled high 
pressure fuel pipe were used to diagnose fuel injector faults. 
As can be seen from Fig. 16, there is a phenomenon of 
entropy crossover, and the entropy crossover of the outer 
wall vibration signal is particularly severe. This means that 
the feature differentiation is not clear enough, which is not 
conducive to fault classification. A confusion matrix showing 
the effects of fault diagnosis is shown in Fig. 17, where the 
outer wall’s fault diagnosis rate is 47.5% and the inner wall’s 
fault diagnosis accuracy rate is 61.25%. This demonstrates 
that fault diagnosis in injectors is not well achieved using 

high pressure fuel pipe vibration signals. To explain this 
phenomenon, the high-pressure fuel pipe was sawn off and, 
as a result, the wall thickness of the inner pipe was found to 
be as high as 5 mm by measurement; the gap between the 
inner pipe and the outer pipe was 1 mm. This structure of 
the high-pressure tube improved the operational safety, to a 
certain extent but, on the other hand, it also weakened the 
internal pressure transmission of the high-pressure tube. 
Therefore, the accuracy of fault diagnosis based on vibration 
signals is relatively low.

Fig. 17. Multiclass confusion matrix of different vibration signals



POLISH MARITIME RESEARCH, No 3/2023108

ACKNOWLEDGEMENTS

This work was supported by the Science & Technology 
Commission of Shanghai Municipality and Shanghai 
Engineering Research Center of Ship Intelligent Maintenance 
and Energy Efficiency, under Grant 20DZ2252300. 

DECLARATION OF COMPETING INTERESTS

The authors declare that they have no known competing 
financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

 References

1.	  	 C.G. Rodriguez, M.I. Lamas, J.D. Rodriguez and A. 
Abbas, “Analysis of the Pre-Injection System of a Marine 
Diesel Engine Through Multiple-Criteria Decision-Making 
and Artificial Neural Networks,” Pol. Marit. Res., vol. 28, 
no. 4, pp. 88-96, 2022, doi: 10.2478/pomr-2021-0051.

2.	  	 F. Gao, “An integrated risk analysis method for 
tanker cargo handling operation using the cloud model 
and DEMATEL method,” Ocean Eng., vol. 266, pp. 113021, 
2022, doi: 10.1016/j.oceaneng.2022.113021.

3.	  	 R. Varbanets, et al., “Concept of Vibroacoustic 
Diagnostics of the Fuel Injection and Electronic Cylinder 
Lubrication Systems of Marine Diesel Engines,” Pol. 
Marit. Res., vol. 29, no. 4, pp. 88-96, 2022, doi: 10.2478/
pomr-2022-0046.

4.	  	 J. Kowalski, “An Experimental Study of Emission and 
Combustion Characteristics of Marine Diesel Engine with 
Fuel Injector Malfunctions,” Pol. Marit. Res., vol. 23, no. 
1, pp. 77-84, 2016, doi: 10.1515/pomr-2016-0011.

5.	  	 M.G. Thurston, M.R. Sullivan and S.P. McConky, 
“Exhaust-gas temperature model and prognostic feature 
for diesel engines,” Appl. Therm. Eng., vol. 229, pp. 120578, 
2023, doi: 10.1016/j.applthermaleng.2023.120578.

6.	  	 Y. Li, W. Zhou and Y. Zi, “A graphic pattern feature-
mapping-based data-driven condition monitoring 
method for diesel engine malfunction identification 
and classification,” Proceedings of the Institution of 
Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science, vol. 233, no. 1, pp. 202-212, 2019, 
doi: 10.1177/0954406218755186.

7.	  	 M. Zhang, Y. Zi, L. Niu, S. Xi and Y. Li, “Intelligent 
Diagnosis of V-Type Marine Diesel Engines Based on 
Multifeatures Extracted From Instantaneous Crankshaft 
Speed,” IEEE T. Instrum. Meas., vol. 68, no. 3, pp. 722-740, 
2019, doi: 10.1109/TIM.2018.2857018.

Fig. 16. IRCMDE values of different vibration signals

CONCLUSION

Considering the non-stationary and nonlinear 
characteristics of the fuel injection pressure signal and 
vibration signal of a high-pressure fuel pipe, a novel intelligent 
fault diagnosis method, based on IRCMDE and FCBF, is 
proposed. The IRCMDE can extract more fault features from 
the original different working condition signals, which is 
beneficial for improving the accuracy of fault diagnosis. 
Then, FCBF should be used to select the sensitive features 
and SVM employed to classify the working condition. The 
main contribution of this paper can be concluded as follows:

It is the firstly time the fuel injection pressure signal has 
been measured on a large marine two-stroke MAN B&W 
6S35ME-B9 diesel engine. The literature showed that most 
research has been carried out based on four-stroke diesel 
engines. Besides this, some research was based on model 
simulation to study fuel injector faults. (2) In this manuscript, 
IRCMDE is proposed, which overcomes the neutralisation 
phenomenon during the coarse-graining process. It can 
extract feature information from the complex signal more 
effectively and its parameter selection criterion has also been 
discussed in detail. The superiority of IRCMDE is validated 
using both simulation and experimental signals, compared 
with RCMDE, MDE, and MPE. (3) It is also the first time that 
both the fuel injection pressure signal and vibration signal of 
a high-pressure fuel pipe has been measured simultaneously 
on a marine two-stroke large diesel engine, in states such as 
reduced injector opening valve pressure, blocked spray holes, 
and worn needle valves. The experimental results showed that 
92.15% fault diagnosis accuracy could be achieved for the 
pressure signal using IRCMDE; however, vibration signals of 
the inner and outer wall of the high pressure fuel pipe could 
only reach 61.25% and 47.5%, respectively.



POLISH MARITIME RESEARCH, No 3/2023 109

8.	  	 Y. Yang, A. Ming, Y. Zhang and Y. Zhu, “Discriminative 
non-negative matrix factorisation (DNMF) and its 
application to the fault diagnosis of diesel engine,” Mech. 
Syst. Signal Pr., vol. 95, pp. 158-171, 2017, doi: 10.1016/j.
ymssp.2017.03.026.

9.	  	 E. Ftoutou and M. Chouchane, “Diesel engine 
injection faults’ detection and classification utilizing 
unsupervised fuzzy clustering techniques,” Proceedings 
of the Institution of Mechanical Engineers, Part C: Journal 
of Mechanical Engineering Science, vol. 233, no. 16, pp. 
5622-5636, 2019, doi: 10.1177/0954406219849089.

10.		S.M. Ramteke, H. Chelladurai and M. Amarnath, 
“Diagnosis of Liner Scuffing Fault of a Diesel Engine via 
Vibration and Acoustic Emission Analysis,” Journal of 
Vibration Engineering & Technologies, vol. 8, no. 6, pp. 
815-833, 2020, doi: 10.1007/s42417-019-00180-7.

11.		A. Zabihi-Hesari, S. Ansari-Rad, F.A. Shirazi and M. 
Ayati, “Fault detection and diagnosis of a 12-cylinder 
trainset diesel engine based on vibration signature analysis 
and neural network,” Proceedings of the Institution of 
Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science, vol. 233, no. 6, pp. 1910-1923, 2019, 
doi: 10.1177/0954406218778313.

12.		L. Li, S. Tiexiong, F. Ma and Y. Pu, “Research on a small 
sample fault diagnosis method for a high-pressure common 
rail system,” Advances in Mechanical Engineering, vol. 13, 
no. 9, pp. 2072279549, 2021, doi: 10.1177/16878140211046103.

13.		A. Zabihi-Hesari, S. Ansari-Rad, F.A. Shirazi and M. 
Ayati, “Fault detection and diagnosis of a 12-cylinder 
trainset diesel engine based on vibration signature analysis 
and neural network,” Proceedings of the Institution of 
Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science, vol. 233, no. 6, pp. 1910-1923, 2019, 
doi: 10.1177/0954406218778313.

14.		A. Taghizadeh-Alisaraei and A. Mahdavian, “Fault 
detection of injectors in diesel engines using vibration 
time-frequency analysis,” Appl. Acoust., vol. 143, pp. 48-58, 
2019, doi: 10.1016/j.apacoust.2018.09.002.

15.		Y. Chen, T. Zhang, Z. Luo and K. Sun, “A Novel Rolling 
Bearing Fault Diagnosis and Severity Analysis Method,” 
Applied Sciences, vol. 9, no. 11, pp. 2356, 2019, doi: 10.3390/
app9112356.

16.		Y. Shang, G. Lu, Y. Kang, Z. Zhou, B. Duan and C. Zhang, 
“A multi-fault diagnosis method based on modified 
Sample Entropy for lithium-ion battery strings,” J. 
Power Sources, vol. 446, pp. 227275, 2020, doi: 10.1016/j.
jpowsour.2019.227275.

17.	 	K. Zhu and H. Li, “A rolling element bearing fault diagnosis 
approach based on hierarchical fuzzy entropy and 
support vector machine,” Proceedings of the Institution 
of Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science, vol. 230, no. 13, pp. 2314-2322, 2016, 
doi: 10.1177/0954406215593568.

18.		Y. Ma, J. Cheng, P. Wang, J. Wang and Y. Yang, “Rotating 
machinery fault diagnosis based on multivariate 
multiscale fuzzy distribution entropy and Fisher score,” 
Measurement, vol. 179, pp. 109495, 2021, doi: 10.1016/j.
measurement.2021.109495.

19.		C. Ma, Y. Li, X. Wang and Z. Cai, “Early fault diagnosis of 
rotating machinery based on composite zoom permutation 
entropy,” Reliab. Eng. Syst. Safe., vol. 230, pp. 108967, 2023, 
doi: 10.1016/j.ress.2022.108967.

20.		S. Wu, P. Wu, C. Wu, J. Ding and C. Wang, “Bearing Fault 
Diagnosis Based on Multiscale Permutation Entropy and 
Support Vector Machine,” Entropy-Switz., vol. 14, no. 8, 
pp. 1343-1356, 2012, doi: 10.3390/e14081343.

21.		Y. Li, G. Li, Y. Wei, B. Liu and X. Liang, “Health condition 
identification of planetary gearboxes based on variational 
mode decomposition and generalised composite multi-
scale symbolic dynamic entropy,” Isa T., vol. 81, pp. 329-341, 
2018, doi: 10.1016/j.isatra.2018.06.001.

22.		H. Azami and J. Escudero, “Amplitude- and Fluctuation-
Based Dispersion Entropy,” Entropy-Switz., vol. 20, no. 3, 
pp. 210, 2018, doi: 10.3390/e20030210.

23.		C. Gu, X. Qiao, H. Li and Y. Jin, “Misfire Fault Diagnosis 
Method for Diesel Engine Based on MEMD and Dispersion 
Entropy,” Shock Vib., vol. 2021, pp. 1-14, 2021, doi: 
10.1155/2021/9213697.

24.		X. Yan and M. Jia, “Intelligent fault diagnosis of rotating 
machinery using improved multiscale dispersion entropy 
and mRMR feature selection,” Knowl.-Based Syst., vol. 163, 
pp. 450-471, 2019, doi: 10.1016/j.knosys.2018.09.004.

25.		Y. Ke, C. Yao, E. Song, Q. Dong and L. Yang, “An early 
fault diagnosis method of common-rail injector based on 
improved CYCBD and hierarchical fluctuation dispersion 
entropy,” Digit. Signal Process., vol. 114, pp. 103049, 2021, 
doi: 10.1016/j.dsp.2021.103049.

26.		R. Dhandapani, I. Mitiche, S. McMeekin and G. Morison, “A 
Novel Bearing Faults Detection Method Using Generalised 
Gaussian Distribution Refined Composite Multiscale 
Dispersion Entropy,” IEEE T. Instrum. Meas., vol. 71, pp. 
1-12, 2022, doi: 10.1109/TIM.2022.3187717.

27.	 	Y. Ma, J. Cheng, P. Wang, J. Wang and Y. Yang, “Rotating 
machinery fault diagnosis based on multivariate 



POLISH MARITIME RESEARCH, No 3/2023110

multiscale fuzzy distribution entropy and Fisher score,” 
Measurement, vol. 179, pp. 109495, 2021, doi: 10.1016/j.
measurement.2021.109495.

28.		Y. Liu, J. Zhang and L. Ma, “A fault diagnosis approach 
for diesel engines based on self-adaptive WVD, improved 
FCBF and PECOC-RVM,” Neurocomputing, vol. 177, pp. 
600-611, 2016, doi: 10.1016/j.neucom.2015.11.074.

29.		M. Zhang, Y. Zi, L. Niu, S. Xi and Y. Li, “Intelligent 
Diagnosis of V-Type Marine Diesel Engines Based on 
Multifeatures Extracted From Instantaneous Crankshaft 
Speed,” IEEE T. Instrum. Meas., vol. 68, no. 3, pp. 722-740, 
2019, doi: 10.1109/TIM.2018.2857018.

30.		C. Zhao, J. Sun, S. Lin and Y. Peng, “Rolling mill bearings 
fault diagnosis based on improved multivariate variational 
mode decomposition and multivariate composite multiscale 
weighted permutation entropy,” Measurement, vol. 195, pp. 
111190, 2022, doi: 10.1016/j.measurement.2022.111190.

31.	 	Y. Ma, J. Cheng, P. Wang, J. Wang and Y. Yang, “Rotating 
machinery fault diagnosis based on multivariate 
multiscale fuzzy distribution entropy and Fisher score,” 
Measurement, vol. 179, pp. 109495, 2021, doi: 10.1016/j.
measurement.2021.109495.

32.		Y. Liu, J. Zhang and L. Ma, “A fault diagnosis approach 
for diesel engines based on self-adaptive WVD, improved 
FCBF and PECOC-RVM,” Neurocomputing, vol. 177, pp. 
600-611, 2016, doi: 10.1016/j.neucom.2015.11.074.

33.		B. Mei, L. Sun, G. Shi and X. Liu, “Ship Maneuvering 
Prediction Using Grey Box Framework via Adaptive 
RM-SVM with Minor Rudder,” Pol. Marit. Res., vol. 26, 
no. 3, pp. 115-127, 2019, doi: 10.2478/pomr-2019-0052.

34.		Y. Ke, C. Yao, E. Song, Q. Dong and L. Yang, “An early 
fault diagnosis method of common-rail injector based on 
improved CYCBD and hierarchical fluctuation dispersion 
entropy,” Digit. Signal Process., vol. 114, pp. 103049, 2021, 
doi: 10.1016/j.dsp.2021.103049.

35.		L. Zhang, J. Sun and C. Guo, “A Novel Multi-Objective 
Discrete Particle Swarm Optimisation with Elitist 
Perturbation for Reconfiguration of Ship Power System,” 
Pol. Marit. Res., vol. 24, no. s3, pp. 79-85, 2017, doi: 10.1515/
pomr-2017-0108.


