PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structural, morphological and photoluminescent properties of Nd-coated silicon nanostructures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The structural, morphological and photoluminescent properties of thermally evaporated neodymium oxide (Nd₂O₃) thin films deposited onto nanostructured silicon (Si-ns) are reported. Si-ns embedded in silicon nitride (SiN) thin films are prepared by plasma-enhanced chemical vapour deposition (PECVD). SiN and Nd₂O₃ thin films uniformity and Si-ns formation are confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of neodymium (Nd), silicon (Si), oxygen (O), and phosphorus (P) is investigated by energy-dispersive spectroscopy (EDS) and secondary ion mass spectrometry (SIMS). Post-annealing SIMS profile indicates an improvement of the homogeneity of activated P distribution in Si bulk. The X-ray diffraction (XRD) combined with Raman spectroscopy and Fourier-transform infrared spectroscopy (FTIR) have been employed to determine amorphous silicon (a-Si), crystalline silicon (c-Si), Nd₂O₃ and SiN phases present in the Nd₂O₃-SiN bilayers with their corresponding chemical bonds. After annealing, a Raman shift toward lower wavenumbers is recorded for the Si peak. XPS data reveal the formation of Nd₂O₃ thin films with Nd-O bonding incorporating trivalent Nd ions (Nd3+). Strong room-temperature photoluminescence is recorded in the visible light range from the Si-ns. Nd-related photoluminescent emission in the near infrared (NIR) range is observed at wavelengths of 1025-1031 nm and 1083 nm, and hence is expected to improve light harvesting of Si-based photovoltaic devices.
Rocznik
Strony
art. no. e145096
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger-7 merveilles, 16027 Algiers, Algeria
  • Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 Bab-Ezzouar, 16111 Algiers, Algeria
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger-7 merveilles, 16027 Algiers, Algeria
  • Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 Bab-Ezzouar, 16111 Algiers, Algeria
autor
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger–7 merveilles, 16027 Algiers, Algeria
autor
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger–7 merveilles, 16027 Algiers, Algeria
  • Centre de Développement des Technologies Avancées (CDTA), Cité 20 août 1956, 16081 Algiers, Algeria
autor
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger-7 merveilles, 16027 Algiers, Algeria
autor
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger-7 merveilles, 16027 Algiers, Algeria
  • Centre de Recherche en Technologie des Semi-conducteurs pour l’Énergétique (CRTSE), 02 Bd Frantz Fanon BP140, Alger-7 merveilles, 16027 Algiers, Algeria
  • Université Abou Bekr Belkaid BP 230, 13000 Chetouane, Tlemcen, Algeria
Bibliografia
  • [1] Priolo, F., Gregorkiewicz, T., Galli, M. & Krauss, T. F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 9, 19-32 (2014). https://doi.org/10.1038/nnano.2013.271
  • [2] Khriachtchev, L., Ossicini, S., Iacona, F. & Gourbilleau, F. Silicon nanoscale materials: From theoretical simulations to photonic applications. Int. J. Photoenergy 2021, 072576 (2012). https://doi.org/10.1155/2012/872576
  • [3] Zelepukin, I. et al. Direct photoacoustic measurement of silicon nanoparticle degradation promoted by a polymer coating. Chem. Eng. J. 430, 132860 (2022). https://doi.org/10.1016/j.cej.2021.132860
  • [4] Park, Y., Yoo, J., Kang, M. H., Kwon, W. & Joo, J. Photoluminescent and biodegradable porous silicon nanoparticles for biomedical imaging. J. Mater. Chem. B 7, 6271-6292 (2019). https://doi.org/10.1039/C9TB01042D
  • [5] Schmitt, S. W., Sarau, G. & Christiansen, S. Observation of strongly enhanced photoluminescence from inverted cone-shaped silicon nanostructures. Sci. Rep. 5, 1-12 (2015). https://doi.org/10.1038/srep17089
  • [6] Hori, T. Structural optimization of silicon thin film for thermoelectric materials. Sci. Rep. 11, 1-9 (2021). https://doi.org/10.1038/s41598-021-01855-6
  • [7] Leonardi, A. A., Faro, M. J. L. & Irrera, A. Biosensing platforms based on silicon nanostructures: A critical review. Anal. Chim. Acta 1160, 338393 (2021). https://doi.org/10.1016/j.aca.2021.338393
  • [8] Song, H. Z. & Bao, X. M. Visible photoluminescence from siliconion-implanted SiO2 sfilm and its multiple mechanisms. Phys. Rev. B 55, 6988-6993 (1997). https://doi.org/10.1103/PhysRevB.55.6988
  • [9] Shimizu-Iwayama, T., Kurumado, N., Hole, D. E. & Townsend, P. D. Optical properties of silicon nanoclusters fabricated by ion implantation. J. Appl. Phys. 83, 6018-6022 (1998). https://doi.org/10.1063/1.367469
  • [10] Raut, H. K., Ganesh, V. A., Nair, A. S. & Ramakrishna, S. Antireflective coatings: A critical, in-depth review. Energy & Environ. Sci. 4, 3779-3804 (2011). https://doi.org/10.1039/C1EE01297E
  • [11] Patrone, L. et al. Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 87, 3829-3837 (2000). https://doi.org/10.1063/1.372421
  • [12] Hessel, C. M. Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 39-401 (2012). https://doi.org/10.1021/cm2032866
  • [13] Huang, H. & Zhu, J. J. The electrochemical applications of rare earth-based nanomaterials. Analyst 144, 6789-6811 (2019). https://doi.org/10.1039/C9AN01562K
  • [14] Sakthivel, P. et al. Different rare earth (Sm, La, Nd) doped magnetron sputtered CdO thin films for optoelectronic applications. J. Mater Sci: Mater. Electron. 30, 9999-10012 (2019). https://doi.org/10.1007/s10854-019-01342-9
  • [15] MacDonald, A. N., Hryciw, A., Lenz, F. & Meldrum, A. Interaction between amorphous silicon nanoclusters and neodymium ions. Appl. Phys. Lett. 89, 173132 (2006). https://doi.org/10.1063/1.2360897
  • [16] Ye, C., Zhou, L., Wang, X. & Liang, Z. Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Phys. Chem. Chem. Phys. 18, 10818-10835 (2016). https://doi.org/10.1039/C5CP07296D
  • [17] Sun, Q. C., Ding, Y. C., Sagar, D. M. & Nagpal, P. Photon upconversion towards applications in energy conversion and bioimaging. Prog. Surf. Sci. 92, 281-316 (2017). https://doi.org/10.1016/j.progsurf.2017.09.003
  • [18] Kenyon, A. J., Trwoga, P. F., Federighi, M. & Pitt, C. W. Optical properties of PECVD erbium-doped silicon-rich silica: evidence for energy transfer between silicon microclusters and erbium ions. J. Phys. Condensed Matter. 6, L319 (1994). https://doi.org/10.1088/0953-8984/6/21/007
  • [19] Debieu, O. et al. Effect of annealing and Nd concentration on the photoluminescence of Nd3+ ions coupled with silicon nanoparticles. J. Appl. Phys. 108, 113114 (2010). https://doi.org/10.1063/1.3510521
  • [20] Bréard, D. et al. Spectroscopic studies of Nd3+-doped silicon-rich silicon oxide films. Mater. Sci. Eng. B 146, 179-182 (2008). https://doi.org/10.1016/j.mseb.2007.07.107
  • [21] Seo, S. Y. & Shin, J. H. The Nd-nanocluster coupling strength and its effect in excitation/de-excitation of Nd3+ luminescence in Nd-doped silicon-rich silicon oxide. MRS Online Proceedings Library (OPL) 770, 610 (2003). https://doi.org/10.1557/PROC-770-I6.10
  • [22] Benyahia, B. et al. Evolution of optical and structural properties of silicon nanocrystals embedded in silicon nitride films with annealing temperature. J. Nano Res. 49, 163-173 (2017). https://doi.org/10.4028/www.scientific.net/JNanoR.49.163
  • [23] Tiour, F. et al. Opto-structural properties of Si-rich SiNx with different stoichiometry. Appl. Phys. A 126, 1-10 (2020). https://doi.org/10.1007/s00339-019-3258-5
  • [24] Brik, A. et al. Annealing Effects on Structural Characteristics of Europium Doped Silicon-Rich Silicon Nitride. Silicon 14, 8417-8425 (2022). https://doi.org/10.1007/s12633-021-01636-w
  • [25] Lipiński, M., Panek, P., Bielańska, E., Węgłowska, J. & Czternastek, H. Influence of porous silicon on parameters of silicon solar cells. Opto-Electron. Rev. 8, 418-420 (2000).
  • [26] Makuła, P., Pacia, M. & Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814-6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892
  • [27] Molinari, M., Rinnert, H., Vergnat, M. & Weisbecker, P.Evolution with annealing treatments of the size of silicon nanocrystallites embedded in a SiNx matrix and correlation with optical properties. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 101, 186-189 (2003). https://doi.org/10.1016/S0921-5107(02)00715-8
  • [28] Takeoka, S., Fujii, M. & Hayashi, S. Size-dependent photolumines-cence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820-16825 (2000). https://doi.org/10.1103/PhysRevB.62.16820
  • [29] Shao, M. et al. Effect of deposition temperature on structure and properties of Nd2O3 thin films prepared by magnetron sputtering. Vacuum 169, 108936 (2019). https://doi.org/10.1016/j.vacuum.2019.108936
  • [30] Deshmukh, N. V. et al. Photoluminescence and IV characteristics of a CdS-nanoparticles-porous-silicon heterojunction. Nanotechnology 12, 290-294 (2001). https://doi.org/10.1088/0957-4484/12/3/316
  • [31] Joshi, M., Hu, S. J. & Goorsky, M. S. Porous silicon films for thin film layer transfer applications and wafer bonding. ECS Trans. 33, 195-206 (2010). https://doi.org/10.1149/1.3483508
  • [32] Bentzen, A., Holt, A., Christensen, J. S. & Svensson, B. G. High concentration in-diffusion of phosphorus in Si from a spray-on source. J. Appl. Phys. 99, 064502 (2006). https://doi.org/10.1063/1.2179197
  • [33] Hu, S. M., Fahey, P. & Dutton, R. W. On models of phosphorus diffusion in silicon. J. Appl. Phys. 54, 6912-6922 (1983). https://doi.org/10.1063/1.331998
  • [34] Kaelble, E. F. Handbook of X-Rays. (McGraw-Hill, 1967).
  • [35] Chavan, S. V., Sastry, P. U.M. & Tyagi, A. K. Combustion synthesis of nano-crystalline Nd-doped ceria and Nd2O3 and their fractal behavior as studied by small angle X-ray scattering. J. Alloys Compd. 456, 51-56 (2008). https://doi.org/10.1016/j.jallcom.2007.02.019
  • [36] Yuvakkumar, R. & Hong, S. I. Nd2O3: novel synthesis and characterization. J. Solgel Sci. Technol. 73, 511-517 (2015). https://doi.org/10.1007/s10971-015-3629-0
  • [37] Barbé, J., Makasheva, K., Perraud, S., Carrada, M. & Despax, B. Structural analysis of the interface of silicon nanocrystals embedded in a Si3N4 matrix. J. Phys. D 47, 255302 (2014). https://doi.org/10.1088/0022-3727/47/25/255302
  • [38] Tsu, R. Defects in Semiconductors. (North-Holland, 1981).
  • [39] Smit, C. et al. Determining the material structure of microcrystalline silicon from Raman spectra. J. Appl. Phys. 94, 3582-3588 (2003). https://doi.org/10.1063/1.1596364
  • [40] Gouteron, J., Michel, D., Lejus, A. M. & Zarembowitch, J. Raman spectra of lanthanide sesquioxide single crystals: Correlation between A and B-type structures. J. Solid State Chem. 38, 288-296 (1981). https://doi.org/10.1016/0022-4596(81)90058-X
  • [41] Jiang, S. et al. Anomalous compression behaviour in Nd2O3 studied by x-ray diffraction and Raman spectroscopy. AIP Adv. 8, 025019 (2018). https://doi.org/10.1063/1.5018020
  • [42] Zhang, S. L. et al. Raman spectra in a broad frequency region of p−type porous silicon. J. Appl. Phys. 76, 3016-3019 (1994). https://doi.org/10.1063/1.357504
  • [43] Dreer, S. & Wilhartitz, P. Critical evaluation of the state of the art of the analysis of light elements in thin films demonstrated using the examples of SiOXNY and AlOXNY films. Pure Appl. Chem. 76, 1161-1213 (2004). https://doi.org/10.1351/pac200476061161
  • [44] Tsu, D. V., Lucovsky, G. & Mantini, M. J. Local atomic structure in thin films of silicon nitride and silicon diimide produced by remote plasma-enhanced chemical-vapor deposition. Phys. Rev. B 33, 7069-7076 (1986). https://doi.org/10.1103/PhysRevB.33.7069
  • [45] Pai, P. G., Chao, S. S., Takagi, Y. & Lucovsky, G. Infrared spectroscopic study of SiOx films produced by plasma enhanced chemical vapor deposition. J. Vac. Sci. Technol. A 4, 689-694 (1986). https://doi.org/10.1116/1.573833
  • [46] Bisi, O., Ossicini, S. & Pavesi, L. Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf. Sci. Rep. 38, 1-126 (2000). https://doi.org/10.1016/S0167-5729(99)00012-6
  • [47] Sopori, B. L. et al. Hydrogen in silicon: A discussion of diffusion and passivation mechanisms. Sol. Energy Mater. Sol. Cell. 41, 159-169 (1996). https://doi.org/10.1016/0927-0248(95)00098-4
  • [48] Zhang, X. H. et al. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4HO in air. T. Nonferr. Soc. 24, 3378-3385 (2014). https://doi.org/10.1016/S1003-6326(14)63480-4
  • [49] Yuvakkumar, R. & Hong, S. I. Nd2O3SC2: novel synthesis and characterization. J. Solgel Sci. Technol. 73, 511-517 (2015). https://doi.org/10.1007/s10971-015-3629-0
  • [50] Jeon, S. H. et al. Hydrothermal synthesis of Nd2O3 nanorods. Ceram. Int. 43, 1193-1199 (2017). https://doi.org/10.1016/j.ceramint.2016.10.062
  • [51] Pan, T. M. & Lu, C. H. Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 99, 113509 (2011). https://doi.org/10.1063/1.3638490
  • [52] Pop, V. et al. The influence of milling and annealing on the structural and magnetic behavior of Nd2Fe14B/α-Fe magnetic nanocomposite. J. Alloys Compd. 581, 821-827 (2013). https://doi.org/10.1016/j.jallcom.2013.07.194
  • [53] Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy. (Perkin-Elmer Corporation, 1992)
  • [54] Pan, Z. J., Zhang, L. T. & Wu, J. S. Electronic structure and transport properties of doped CoSi single crystal. J. Appl. Phys. 101, 033715 (2007). https://doi.org/10.1063/1.2464186
  • [55] Wilcoxon, J. P. & Samara. G. A., Tailorable, visible light emission from silicon nanocrystals. Appl. Phys. Lett. 74, 3164-3166 (1999). https://doi.org/10.1063/1.124096
  • [56] Li, X., He, Y. Talukdar, S. S. & Swihart, M. T. Process for preparing macroscopic quantities of brightly photoluminescent silicon nano-particles with emission spanning the visible spectrum. Langmuir 20, 8490-8496 (2003). https://doi.org/10.1021/la034487b
  • [57] Iacona, F., Franzò, G. & Spinella, C. Correlation between lumines-cence and structural properties of Si nanocrystals. J. Appl. Phys. 87, 1295-1303 (2000). https://doi.org/10.1063/1.372013
  • [58] Chen, G. et al. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photolumi-nescence for bioimaging applications. ACS Nano 6, 2969-2977 (2012). https://doi.org/10.1021/nn2042362
  • [59] Yu, X. F. et al. Highly efficient fluorescence of NdF3/SiO2 core/shell nanoparticles and the applications for in vivo NIR detection. Adv. Mater. 20, 4118-4123 (2008). https://doi.org/10.1002/adma.200801224
  • [60] Guzik, M., Tomaszewicz, E., Guyot, Y., Legendziewicz, J. & Boulon, G. Structural and spectroscopic characterizations of two promising Nd-doped monoclinic or tetragonal laser tungstates. J. Mater. Chem. 22, 14896-14906 (2012). https://doi.org/10.1039/C2JM30799E
  • [61] Henderson, E. J. et al. Colloidally stable silicon nanocrystals with near‐infrared photoluminescence for biological fluorescence imaging. Small 7, 2507-2516 (2011). https://doi.org/10.1002/smll.201100845
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3b17286-a5a7-4022-a132-fc8942384732
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.