PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of mechanical properties of 3D printed aluminium components with variable core infill values

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is to present numerical modelling results for 3D-printed aluminium components with different variable core infill values. Information published in this paper will guide engineers when designing the components with core infill regions. Design/methodology/approach: During this study 3 different core types (Gyroid, Schwarz P and Schwarz D) and different combinations of their parameters were examined numerically, using FEM by means of the software ANSYS Workbench 2019 R2. Influence of core type as well as its parameters on 3D printed components strength was studied. The “best” core type with the “best” combination of parameters was chosen. Findings: Results obtained from the numerical static compression tests distinctly showed that component strength is highly influenced by the type infill choice selected. Specifically, infill parameters and the coefficient (force reaction/volumetric percentage solid material) were investigated. Resulting total reaction force and percentage of solid material in the component were compared to the fully solid reference model. Research limitations/implications: Based on the Finite Element Analysis carried out in this work, it was found that results highlighted the optimal infill condition defined as the lowest amount of material theoretically used, whilst assuring sufficient mechanical strength. The best results were obtained by Schwarz D core type samples. Practical implications: In the case of the aviation or automotive industry, very high strength of manufactured elements along with a simultaneous reduction of their wight is extremely important. As the viability of additively manufactured parts continues to increase, traditionally manufactured components are continually being replaced with 3D-printed components. The parts produced by additive manufacturing do not have the solid core, they are rather filled with specific geometrical patterns. The reason of such operation is to save the material and, in this way, also weight. Originality/value: The conducted numerical analysis allowed to determine the most favourable parameters for optimal core infill configurations for aluminium 3D printed parts, taking into account the lowest amount of material theoretically used, whilst assuring sufficient mechanical strength.
Rocznik
Strony
16--24
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering, Lodz University of Technology, ul. Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] N. Labonnote, A. Rønnquist, B. Manum, P. Rüther, Additive construction: state-of-the-art, challenges and opportunities, Automation in Construction 72/3 (2016) 347-366. DOI: https://doi.org/10.1016/j.autcon.2016.08.026
  • [2] L. Kaczmarek, P. Kula, J. Sawicki, S. Armand, T. Castro, P. Kruszyński, A. Rochel, New possibilities of applications aluminium alloys in transport, Archives of Metallurgy and Materials 54/4 (2009) 1199-1205.
  • [3] J.O. Milewski, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry, Springer International Publishing AG, 2017. DOI: https://doi.org/10.1007/978-3-319-58205-4
  • [4] ISO/ASTM 52900.2015: Additive Manufacturing - General Principles - Terminology International Organization for Standardization, Geneva, Switzerland, 2015
  • [5] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing, Springer, New York, 2015. DOI: https://doi.org/10.1007/978-1-4939-2113-3
  • [6] D.T. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering 143 (2018) 172-196. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
  • [7] D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Additive manufacturing of metals, Acta Materialia 117 (2016) 371-392. DOI: https://doi.org/10.1016/j.actamat.2016.07.019
  • [8] H. Bikas, P. Stavropoulos, G. Chryssolouris, Additive manufacturing methods and modelling approaches: a critical review, International Journal of Advanced Manufacturing Technology 83 (2016) 389-405. DOI: https://doi.org/10.1007/s00170-015-7576-2
  • [9] A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, D. Krause, T. Brzezinski, J. Schroers, R. Fulop, J.S. Myerberg, M. Sowerbutts, Y.-M. Chiang, A.J. Hart, E.M. Sachs, E.E. Lomeli, A.C. Lund, Traditional and additive manufacturing of a new Tungsten heavy alloy alternative, International Journal of Refractory Metals and Hard Materials 73 (2018) 22-28. DOI: https://doi.org/10.1016/j.ijrmhm.2018.01.019
  • [10] S.A. Jawade, R.S. Joshi, S.B. Desai, Comparative study of mechanical properties of additively manufactured aluminum alloy, Materials Today: Proceedings (2020) (in press). DOI: https://doi.org/10.1016/j.matpr.2020.02.096
  • [11] F. Caiazzo, V. Alfieri, P. Argenio, V. Sergi, Additive manufacturing by means of laser-aided directed metal deposition of 2024 aluminum powder: Investigation and optimization, Advances in Mechanical Engineering 9/8 (2017) 1-12. DOI: https://doi.org/10.1177%2F1687814017714982
  • [12] J. Deng, C. Chen, W. Zhang, Y. Li, R. Li, K. Zhou, Densification, Microstructure, and Mechanical Properties of Additively Manufactured 2124 Al-Cu Alloy by Selective Laser Melting, Materials 13/19 (2020) 4423. DOI: https://doi.org/10.3390/ma13194423
  • [13] K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting, Physics Procedia 39 (2012) 439-446. DOI: https://doi.org/10.1016/j.phpro.2012.10.059
  • [14] E. Sert, L. Hitzler, S. Hafenstein, M. Merkel, E. Werner, A. Öchsner, Tensile and compressive behaviour of additively manufactured AlSi10Mg samples, Progress in Additive Manufacturing 5 (2020) 305-313. DOI: https://doi.org/10.1007/s40964-020-00131-9
  • [15] B.A. Aloyaydi, S. Sivasankaran, H.R. Ammar, Influence of infill density on microstructure and flexural behavior of 3D printed PLA thermoplastic parts processed by fusion deposition modelling, AIMS Materials Science 6/6 (2019) 1033-1048. DOI: https://doi.org/10.3934/matersci.2019.6.1033
  • [16] M. Schmitt, R.M. Mehta, I.Y. Kim, Additive manufacturing infill optimization for automotive 3D-printed ABS components, Rapid Prototyping Journal 26/1 (2020) 89-99. DOI: https://doi.org/10.1108/RPJ-01-2019-0007
  • [17] O. Lužanin, D. Movrin, M. Plančak, Effect of layer thickness, deposition angle, and infill on maximum flexural force in FDM-built specimens, Journal for Technology of Plasticity 39/1 (2014) 49-58.
  • [18] What Is the Influence of Infill %, Layer Height and Infill Pattern on my 3D Prints?, 3D Matter, West Conshohocken, PA. Available from: https://www.3dprinteros.com/what-is-the-influence-of-infill-layer-height-and-infill-pattern-on-my-3d-prints
  • [19] M. Costas, D. Morin, M. de Lucio, M. Langseth, Testing and simulation of additively manufactured AlSi10Mg components under quasi-static loading, European Journal of Mechanics - A/Solids 81 (2020) 103966. DOI: https://doi.org/10.1016/j.euromechsol.2020.103966
  • [20] Y. Cicek, A. Altinkaynak, E. Balta, Numerical and experimental analysis of infill rate on the mechanical properties of fused deposition modelling polylactic acid parts, Proceedings of the SPE ANTEC®, Anaheim, 2017.
  • [21] J.A. Gopsill, J. Shindler, B.J. Hicks, Using finite element analysis to influence the infill design of fused deposition modelled parts, Progress in Additive Manufacturing 3 (2018) 145-163. DOI: https://doi.org/10.1007/s40964-017-0034-y
  • [22] S.N Cerda-Avila, H.I. Medellín-Castillo, D.F. Lange, Analysis and Numerical Simulation of the Structural Performance of Fused Deposition Modeling Samples With Variable Infill Values, ASME Journal of Engineering Materials and Technology 141/2 (2019) 021005. DOI: https://doi.org/10.1115/1.4041854
  • [23] Engineering Data Sources in Ansys Workbench 2019R2 software.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3ac8e14-87b3-4c47-a366-a5d1501de9c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.