
JACSM 2015, Vol. 7, No. 2, pp. 89 -

89

CONVERGENCE ANALYSIS OF MULTILAYER FEEDFORWARD
NETWORKS TRAINED WITH PENALTY TERMS: A REVIEW

Jian Wang1, Guoling Yang1, Shan Liu1, Jacek M. Zurada2,3

1 College of Science
China University of Petroleum, Qingdao, Shandong, China

wangjiannl@upc.edu.cn
yangguolingfwz@163.com

liushan@upc.edu.cn
2 Department of Electrical and Computer Engineering
University of Louisville, Louisville, Kentucky, USA

3 Information Technology Institute, University of Social Sciences, Łódź, Poland
jacek.zurada@louisville.edu

Abstract
Gradient descent method is one of the popular methods to train feedforward
neural networks. Batch and incremental modes are the two most common
methods to practically implement the gradient-based training for such networks.
Furthermore, since generalization is an important property and quality criterion
of a trained network, pruning algorithms with the addition of regularization
terms have been widely used as an efficient way to achieve good generalization.
In this paper, we review the convergence property and other performance
aspects of recently researched training approaches based on different
penalization terms. In addition, we show the smoothing approximation tricks
when the penalty term is non-differentiable at origin.

Key words: Gradient, feedforward neural networks, generalization, penalty,
convergence, pruning algorithms.

1 Introduction

Multi-layer perceptron-type neural networks have been widely used in many
real-life applications such as data analysis, trend analysis, classification,
monitoring, control, clustering and pattern recognition. They automatically
learn from observational data [1], [2]. Especially the so-called deep neural
networks that have been used since since 2006 [3] have been recognized to
achieve outstanding performance on many important problems in speech

103
10.1515/jacsm-2015-0011

90

Convergence Analysis of Multilayer ...

recognition, natural language processing, pattern recognition and computer
vision [4].

The promising advantages of neural networks lie in their attractive and
biologically inspired model. The models encompass data-driven learning
techniques that adjust the weights without a specified function for the under-
lying model. We note that neural networks are mostly nonlinear models,
which readily makes them flexible in dealing with real-world and complex
tasks. More importantly, neural networks have been rigorously proved to be
universal functional approximators, that is, they can approximate any given
function with arbitrary accuracy [5].

As commonly known, the backpropagation (BP) algorithm is one of the
mostly used techniques for training multi-layer neural networks [6], [7]. There
are two main popular modes to implement the BP algorithm: batch mode and
incremental mode [8]: For batch learning, the weights of networks are adjust-
ed once and after an entire presentation of the training samples, which corre-
sponds to the standard gradient method. The incremental learning, however, is
a variation of the standard gradient method, which updates the weights once
and after the presentation of each training sample.

The incremental training strategy may be sub-divided into three different
modes in terms of the order that the samples are fed to the network. The first
strategy is cyclic learning, whose order is randomly chosen in the initial step
and then remains fixed during the whole training procedure. The second strat-
egy is the almost-cyclic learning, where each sample is randomly chosen once
per cycle. The last strategy is online learning which selects the samples in
completely stochastic order in the whole training procedure.

The training process of a neural network may be stated as a “curve-fitting”
problem. A network with “good” generalization means that the input-output
mapping computed by the network performs well for testing data never used
in training of the network. A network that is constructed to generalize well
will generate a suitable input-output mapping. When, however, the training of
a network concentrates on training samples, the network may memorize the
training examples very well rather than fit the testing data. Such a phenome-
non of “overfitting” usually indicates worse generalization.

There are three main factors on influencing the generalization of a trained
network: the size of the training data, the network architecture, and the inher-
ent complexity of the problem. How to determine the best architecture of net-
work to achieve a good generalization becomes here an attractive aspect for
studying the training properties.

Generally speaking, the optimal network architecture is one with the num-
ber of hidden units large enough to learn the examples and small enough to
generalize well. To achieve a good generalization, the optimal network design
depends on an appropriate tradeoff between reliability of training samples and
goodness of the model. For BP learning, this tradeoff may be fulfilled by min-

91

Wang J., Yang G., Liu S., Zurada J. M.

imizing the total risk, expressed as a function of the weight vector w as fol-
lows

��w� � ����w� � ����w� (1)

The first term is the normal BP error term, which depends on both the net-
work model and the input samples. The second term represents the complexity
of the network as a function of the weights, which is so-called penalty term,
and  is the penalization coefficient [9], [10]. The aim of (1) is to find a
network with the simplest architecture possible and that is adequate to classify
its input patterns.

Gradient-based method is a simple and popular learning algorithm for
BPNN training. Some deterministic convergence results of both batch and
incremental gradient algorithms for neural networks have been established in
[11-19]. Boundedness of the weights during training turns out to be an im-
portant assumption to assure the convergent behavior. Interestingly, this pre-
requisite condition can be usually guaranteed by adding penalty terms. Due to
different penalty terms, corresponding learning algorithms demonstrate differ-
ent performance. In this paper, we will focus on the convergence analysis of
BPNN with penalties and claim the distinction among them.

The rest of this paper is organized as follows. A brief description of batch
and incremental (three different strategies) gradient-methods for BPNN train-
ing is given in Section 2. We describe the generally used penalties and prun-
ing schemes in Section 3, while some specialized tricks for non-differential
penalty functions will be stated in the Section 4. The asymptotic and deter-
ministic convergence results are separately listed for different network modes
in Section 5 and 6. In the last section, we offer a brief conclusion and some
remarks.

2 Gradient method based algorithm for BPNN

Gradient descent method is a first-order optimization algorithm. It is often
used to train BPNNs. To find a local minimum of error function, one takes
steps proportional to the negative of the gradient of the error function in the
weight space.

We consider a feedforward networks with three layers. Suppose that the
training sample set is �x�, o�����

� , where x� and o� are the input and the
desired output of the �-th sample.

For given input x���� � �,� , �), the network output is denoted by y�.
Correspondingly, the error produced at the output of the �-th input sample is
defined by

92

Convergence Analysis of Multilayer ...

��w,x�� � ��� � ��� (2)

where �� is the corresponding actual output, w is the total weights. Sum-
ming the error-energy contributions of all the neurons in the output layer, the
total instantaneous error energy of the whole networks can be expressed as
follows

�(w)=
1
2����w,x�� � 1

2���� � ����
�.

���

���

�

���
 (3)

Naturally, the above error function is a function of all the adjustable weights
of the multilayer networks. Depending on how the supervised learning of the
BP neural networks is performed, two main different learning algorithms-
namely, batch and incremental learning, as the following discussed in the
context of gradient descent methods. We note that there are three specific
incremental algorithms differ by the ordering of the training samples as
online, cyclic and almost-cyclic learning [8].

2.1 Batch-mode learning

The popularity for the supervised training of multilayer neural networks
has been enhanced by the development of the back-propagation algorithm.
Gradient method is widely used to train the back-propagation algorithms.

In the bath-mode learning, adjustments to the weights of BPNN are per-
formed after the presentation of all the � samples, or after an epoch. The cost
function for batch learning is defined by the error function �(w), that is,

�(w)=
1
2���w,x�� � 1

2���� � ����
�

���

���

���

���
 (4)

Adjustments to the weights are carried on an epoch-by-epoch basis. The
gradient of the error function is given by ��w�w�. Starting from an initial
value w�, the weights �w�� are interactively updated by

w��� � w� � ��w�w��, � � �,1,2,�. (5)

We note that the batch-mode learning is completely deterministic and di-
rectly stems from the standard gradient method. It is clear to see that it re-
quires large storage which is inconvenient in hardware applications.

93

Wang J., Yang G., Liu S., Zurada J. M.

��w,x�� � ��� � ��� (2)

where �� is the corresponding actual output, w is the total weights. Sum-
ming the error-energy contributions of all the neurons in the output layer, the
total instantaneous error energy of the whole networks can be expressed as
follows

�(w)=
1
2����w,x�� � 1

2���� � ����
�.

���

���

�

���
 (3)

Naturally, the above error function is a function of all the adjustable weights
of the multilayer networks. Depending on how the supervised learning of the
BP neural networks is performed, two main different learning algorithms-
namely, batch and incremental learning, as the following discussed in the
context of gradient descent methods. We note that there are three specific
incremental algorithms differ by the ordering of the training samples as
online, cyclic and almost-cyclic learning [8].

2.1 Batch-mode learning

The popularity for the supervised training of multilayer neural networks
has been enhanced by the development of the back-propagation algorithm.
Gradient method is widely used to train the back-propagation algorithms.

In the bath-mode learning, adjustments to the weights of BPNN are per-
formed after the presentation of all the � samples, or after an epoch. The cost
function for batch learning is defined by the error function �(w), that is,

�(w)=
1
2���w,x�� � 1

2���� � ����
�

���

���

���

���
 (4)

Adjustments to the weights are carried on an epoch-by-epoch basis. The
gradient of the error function is given by ��w�w�. Starting from an initial
value w�, the weights �w�� are interactively updated by

w��� � w� � ��w�w��, � � �,1,2,�. (5)

We note that the batch-mode learning is completely deterministic and di-
rectly stems from the standard gradient method. It is clear to see that it re-
quires large storage which is inconvenient in hardware applications.

2.2 Incremental learning

In the incremental method of supervised learning, adjustments to the
weights of multilayer neural networks are performed on a sample-by-sample
basis. That is, the weight updating takes place after each presentation of one
drawn training sample. Due to the difference of ordering for the samples fed
into the network, we distinguish three popular incremental learning strategies:
cyclic learning, almost-cyclic learning and on-line learning.

2.2.1 Cyclic learning

Cyclic learning is a learning with a fixed cycle. Before training, the feed-
ing order of training samples is randomly drawn and then fixed in the whole
training procedure.

Given an initial weight w�, the cyclic learning updates the weights inter-
actively by

w������ � w���� � �����w����, x�� (6)

where � is the �-th iteration epoch, ���w����, x�� is the gradient of the
instantaneous error function with respect to the total weight. We note that the
�� � ��-th weights updating of the �-th cycle depends on the �-th training
sample.

2.2.2 Almost-cyclic learning

The training process of almost-cyclic learning consists of training cycles in
which each of the samples is fed into the network exactly once. In addition,
the order of sample presentation is continually drawn at random after each
learning cycle.

For any given initial weight vector w�, the almost-cyclic learning changes
the weights as follows

w������ � w���� � �����w����, x����� (7)

For the �-th training epoch, let �x����, x����,⋯ , x����� be a stochastic
permutation of the �x�, x�,⋯ , x��. This is the essential difference between
cyclic and almost-cyclic learning.

2.2.3 On-line learning

For each online learning step, one of the training samples is randomly
drawn from the training set and presented to the network. Online learning is a

94

Convergence Analysis of Multilayer ...

special incremental learning where the weight updating takes place after each
presentation of randomly chosen training samples.

For any initial weight w�, the weights are iteratively updated by the fol-
lowing formula

w��� � w� � �����w�, x�����, (8)

Where � ∈ � is the �-th iteration number, and r��� is randomly cho-
sen from �,�,� , �. We make it clear that there is no training cycles for on-
line learning. Each update of weight only depends on the randomly chosen
sample.

3 Penalization and Network Pruning

To obtain a good generalization for a trained network, it is a popular strategy
to add penalty terms to the standard error function. The penalties as below
modify the objective function and the gradient based BP algorithm effectively
prunes the network by pushing redundant weights to zero during training.
Then the trained network performs as a smaller system with good generaliza-
tion. The specific forms of these penalty functions are as follows:
��w� � ∑ ���� ,���∈w (9) Weight Decay (�� Regularizer) [11-16, 20-22]

��w� � ∑ ���������
�����������

,���∈w 		 (10) Weight Elimination [23-26]

��w� � ∑ �����
�
�,���∈w 		 (11) ���� Regularizer [27], [28]

��w� � ∑ ‖w�‖,w�∈w 	 (12) Group Lasso penalty [29]
When a network is to be pruned, it is a common choice to add a penalty

term with the sum of the squared weights. This quadratic penalty results in
discouraging the weights from taking large values. However, this penalty term
causes all weights to decay exponentially to zero at the same rate and dispro-
portionately penalizes large weights.

To remedy this problem, the Weight Elimination penalty function has been
proposed in [23, 24]. It penalizes small weights to decay at a higher rate than
large weights by choosing suitable learning rate and penalization coefficients.
However, a disadvantage of this penalty is that it can’t distinguish between
large and very large weights.

An �� �⁄ regularizer was proposed in [27, 28] which is a nonconvex pen-
alty. The �� �⁄ regularizer is observed to have many promising properties
such as unbiasedness, sparsity and Oracle properties. Particularly, the solution
of the �� �⁄ regularizer delivers better sparsity than that of the �� regulariz-
er. Then, many references employ the �� �⁄ regularizer of the weights as a

95

Wang J., Yang G., Liu S., Zurada J. M.

special incremental learning where the weight updating takes place after each
presentation of randomly chosen training samples.

For any initial weight w�, the weights are iteratively updated by the fol-
lowing formula

w��� � w� � �����w�, x�����, (8)

Where � ∈ � is the �-th iteration number, and r��� is randomly cho-
sen from �,�,� , �. We make it clear that there is no training cycles for on-
line learning. Each update of weight only depends on the randomly chosen
sample.

3 Penalization and Network Pruning

To obtain a good generalization for a trained network, it is a popular strategy
to add penalty terms to the standard error function. The penalties as below
modify the objective function and the gradient based BP algorithm effectively
prunes the network by pushing redundant weights to zero during training.
Then the trained network performs as a smaller system with good generaliza-
tion. The specific forms of these penalty functions are as follows:
��w� � ∑ ���� ,���∈w (9) Weight Decay (�� Regularizer) [11-16, 20-22]

��w� � ∑ ���������
�����������

,���∈w 		 (10) Weight Elimination [23-26]

��w� � ∑ �����
�
�,���∈w 		 (11) ���� Regularizer [27], [28]

��w� � ∑ ‖w�‖,w�∈w 	 (12) Group Lasso penalty [29]
When a network is to be pruned, it is a common choice to add a penalty

term with the sum of the squared weights. This quadratic penalty results in
discouraging the weights from taking large values. However, this penalty term
causes all weights to decay exponentially to zero at the same rate and dispro-
portionately penalizes large weights.

To remedy this problem, the Weight Elimination penalty function has been
proposed in [23, 24]. It penalizes small weights to decay at a higher rate than
large weights by choosing suitable learning rate and penalization coefficients.
However, a disadvantage of this penalty is that it can’t distinguish between
large and very large weights.

An �� �⁄ regularizer was proposed in [27, 28] which is a nonconvex pen-
alty. The �� �⁄ regularizer is observed to have many promising properties
such as unbiasedness, sparsity and Oracle properties. Particularly, the solution
of the �� �⁄ regularizer delivers better sparsity than that of the �� regulariz-
er. Then, many references employ the �� �⁄ regularizer of the weights as a

penalty term. The experiments shoe that �� �⁄ penalty forms better pruning
achievement than weight Decay and Weight Elimination.

We note that the �� �⁄ regularizer penalizes the weights individually, that
is, some of the weights which connecting a neuron are decreased to zero while
other weights are still retain with a large value. Thus, it may not prune the
neurons at a group manner.

Group Lasso has been introduced in [29] as an extension of the so-called
Lasso, which encourages sparsity at a group level. It is an intermediate penal-
ty function between the �� penalty in Lasso and the �� penalty (weight
Decay). Naturally, a novel penalty term has been investigated by borrowing
the Group Lasso idea to train the BP neural networks.

It is clear to see that the penalty terms of the above function (11) and (12)
are not differentiable at the origin. This may lead to difficulties on both theo-
retical analysis and numerical simulations, when the weights are very close to
zero. It is a popular strategy to approximate the non-differential penalty term
with smoothing functions.

For any finite dimensional vector �, we introduce following smoothing
functions.

1)”Sqrt Form”

�(z)=� ‖z‖			 ‖z‖ � �,
�‖z‖ � � � � � √�� � �, ‖z‖ � �, (13)

2)”Quadratic Form”

�(z)=�‖z‖, ‖z‖ � �,
	 ‖z‖�
�� � �

� , ‖z‖ � �, (14)

3)”Quartic Form”

�(z)=�‖z‖, 									 ‖z‖ � �,
�	 ‖z‖�

��� �
�‖z‖�
�� � ��

� , ‖z‖ � �, (15)

4)”Sextic Form”

�(z)=� ‖z‖, 					 ‖z‖ � �,
‖z‖������‖z‖������‖z‖������

���� , ‖z‖ � �, (16)

96

Convergence Analysis of Multilayer ...

where the smoothing parameter � � � is a fixed positive constant. We note
that the approximations are much closer to the original absolute function for
the higher orders of the smoothing functions.

4 Asymptotic Convergence Analysis

For online learning strategy, the theoretical results mainly perform asymptotic
convergent behaviors since the training sequence is absolute randomly gener-
ated from the training data set. In [13], the convergence results of online BP
neural networks with �� penalty were based on the following assumptions.

A1) Each training sample is randomly chosen from the training set
�x�, y�����

� with independent identical distribution;
A2) The activation functions � and � are twice continuously differenti-

able on �. Moreover, �, �, ��, ��, ��� and ��� are uniformly bound-
ed on �.

A2’) The activation function � is twice continuously differentiable on �.
Moreover, �,��, ��� are uniformly bounded on �. ���� � � for all
� � �.

A3) ���� is a decreasing positive sequence such that a) ∑ �� � ����� ,
b) lim�→� �������� � ������ � � �, and c) ∑ ��� � ����� , for
some � � ��

Theorem 4.1. Suppose that the above assumptions A1), A3), and either
A2) or A2’) hold. Let �w����� be a sequence of weight vectors iteratively
generated by (online equation) with arbitrary initial value w� . Then,
w� → w∗ with probability 1, where w∗ is the optimal weight.

Fault-tolerant BP NNs have been proposed for over two decades, which in-
ject weight noise during training procedure. However, until recently, only a
few sources discuss its convergent behavior [21], [22].

Actually, they focus on two kinds of online fault-tolerant BP NNs: node
fault and weight noise injections. The online node fault injection-based algo-
rithm is that the hidden nodes randomly output zeros during training. For
weight noise injections, there are mainly two types of weight noise injection-
based algorithms during each step of training: multiplicative weight noise and
additive weight noise injections with weight decay penalty (�� regularizer).

On the basis of the different fault strategies in training process, the corre-
sponding objective functions are established, the boundedness of weight se-
quence and the asymptotic convergence results are rigorously proved. For
brevity, we only list the convergence results for weight noise injection-based
BPNN under mild conditions of activation function and learning rates [21].

97

Wang J., Yang G., Liu S., Zurada J. M.

A1) The activation function is set to be the common sigmoid function
���� � �

��� , � � �.
A2) The learning rates �� satisfy that �� → �,∑ ������ � � and

∑ ������� � �.
Theorem 4.2. Suppose that the activation function is with the sigmoid

function in A1). The weight sequence �w����� is iteratively generated by
(online equation) with arbitrary initial value w�. The penalization coefficient
� is some positive constant. In addition, if the assumption A2) is also valid.
Then, ����→����w���0 with probability 1, where ��w�� is the estab-
lished objective function.

5 Deterministic Convergence Analysis

5.1 Batch-mode learning with ���� regularizer

The idea of ���� regularizer has been successfully applied in variable selec-
tion and feature extraction problems in high dimensional data analysis. It is a
nonconvex penalty and possesses many promising properties such as unbi-
asedness, sparsity and oracle property. Thus, it has been introduced into the
batch gradient learning algorithm for the pruning BP NNs in [19].

Consider a single hidden-layer network consisting of p input neurons, q
hidden neurons and 1 output neuron. Let �� � ����, ���,� , ����� � �� be
the weight vector which connects the hidden nodes and the output node, and
denote �� � ����, ���,� ,����� � �� as the weight vector between the
input nodes and the i-th hidden node. Let ��� → � be the activation function
of the hidden and output layers. Define a vector-value function G��� →
��,G��� � ������, �����,� , ������� � ��, for � � � ���, ��,� , ���� � ��.
Suppose that �x�, ������� are the given bounded training samples. The error
function with the ���� regularization penalty term is denoted by the follow-
ing:

��w� � 1
2��o� � ��w0 � ��vx����� � ���|���|

�
�

�

���

�

���
,

�

���
 (17)

We note that the ���� regularization term in (11) is non-differentiable at
the origin, which leads to more difficulties in theoretical analysis. More im-
portantly, it is inevitable that the oscillation phenomenon will appear in nu-
merical simulations. To overcome this drawback, a modified ���� regulariza-

98

Convergence Analysis of Multilayer ...

tion term is presented by employing a smoothing function to approximate the
absolution value function, which results in the new error function.

��w� � 1
2��o� � ��w0 � ��vx����� � ����������

�

���

�

���
,

�

���
 (18)

where ���� is as the following piecewise polynomial function:

����=�|�|, ��|�| � �,
�� ����� �

���
�� �

��
� , ��|�| � �, (19)

Starting with an initial value w�, the weights �w�� are iteratively updated
by:

w���=w�-����w��, (20)

where ���w�� represents the gradient of ��w�� with respect to w, and
the learning rate � � 0 is a constant.

To show the convergence results of the batch gradient method with
smoothing ���� regularization penalty, some sufficient conditions are as
follows:

A1). |����|, |�����|, |������| are uniformly bounded for � � �;
A2). ‖w��‖ (�=0, 1, 2,⋯) are uniformly bounded;
A3). � and � are chosen satisfy. 0 � � � �

���� , where � � √�
�√�� and

� is a given positive constant;
A4). There exists a compact set � such that w� � � and the set

�� � �w � �� ���w� � 0� contains finite points.

Theorem 5.1. Let the error function be defined by (18), and the weight se-
quence �w�� be generated by the iteration algorithm (20) for an arbitrary
initial value. If assumption A1)-A3) are valid, then we have

(ⅰ). ��w���� � ��w��, � � 0, �1, �2, �⋯ �
(ⅱ). There exists �∗ � 0, such that lim��� ��w�� � �∗;
(ⅲ). lim���‖���w��‖ � 0.

Furthermore, if assumption A4) also holds, then we have the following strong
convergence;

(ⅳ). There exists a point w∗ � �� such that lim��� w� � w*.

5.2 Cyclic learning with ���� regularizer

Cyclic learning algorithm is one of the popular incremental algorithms
compared with the batch mode training for BPNN. In addition, incremental

99

Wang J., Yang G., Liu S., Zurada J. M.

learning algorithm is more efficient in term of both storage and computational
burden. Based on the better pruning performance of ���� regularizer, it is
then presented as a penalty term for cyclic tearing of BP neural networks.

A modified smoothing ���� regularizer has been proposed due to the non-
differentiable ability at the origin. The smoothing error function is then de-
fined for cyclic mode training procedure

��w� � 1
2 �o

� � ��w0 � ��vx����� � ����������
�

���

�

���
, (21)

Where ���� is identical to the above definition (3), � � 1, 	⋯ , �. For
any given initial weight w0, the weight sequence �w�� is iteratively gener-
ated by:

w������ � w���� � �����w�����, (22)

where � � 0, 	1, 	2, 	⋯ � � � 1, 	⋯ , �� �� is the learning rate in the �-th
training epoch.

Let �� � �w� ���w� � 0� be the stationary point set of the error function
��w�. The following assumptions are imposed for the convergence of the
cyclic BPNN with ���� penalty term [18].

A1) |����| and	|�����| are Lipschitz continuous for � � �;
A2) The learning rates �� satisfy that

0 � �� � 1 , and	∑ �� � ����� .

Theorem 5.2. Let the error function ��w� be defined by (21). w� be
an arbitrary initial value, and the weight sequence �w�� be generated by the
iteration algorithm (22). Assume the conditions A1) and A2) are valid, then
there exists an unique w∗ � ��, such that

lim���w� � w*.
lim���‖���w��‖ � ‖��w∗�‖ � 0.

5.3 Almost cyclic learning with �� regularizer

For almost-cyclic learning with �� penalty, each training sample is cho-
sen with a stochastic order and is fed exactly once in each training epoch. Let
�x����, x����,⋯ , x����� be a stochastic permutation of the samples set
�x�, x�,⋯ , x����. The learning rate of training procedure is fixed as �� � 0
in the �-th epoch. For fixed weight w, the output error for the �-th iteration
is defined as

100

Convergence Analysis of Multilayer ...

��w� � 1
2 �o

� � ��u � ��vx�������� � �‖w‖� (23)

The weights are iteratively updated as following

w������ � w���� � �����w����, x�����, (24)

where ���w����, x����� is the gradient with respect to w of the � -th
iteration in the �-th epoch
 Let �� � �w� ���w� � �� be the stationary point set of the error func-
tion (23). Denote ��,� � � be the projection of �� onto the � � �� coordi-
nate axis, that is,

��,� � �w� � ��w � ���,��,� ,��,��������� � ���
For � � 1, �2, �� , ��� � 1�. To guarantee the convergence of the algorithm,
the following assumptions are required [16]:

A1). ����� and������ are Lipschitz continuous on �;
A2). �� � �, ∑ �� � ����� and ∑ ��� � ����� ;

A3). ��,� does not contain any interior point for every � �
1, �2, �� , ��� � 1�.

Theorem 5.3. Assume that conditions A1) and A2) are valid. Then starting
from an arbitrary initial weight w�, the learning sequence �w�� generated
by (24) is uniformly bounded, that is, there exists a positive constant � � �
such that

‖w�‖ � �,������ � �, �1, �2, ��
and satisfies the following weak convergence

lim���‖���w��‖ � �.
Moreover, if the assumption A3) is also valid, there holds the strong conver-
gence. There exists an unique w∗ � ��, such that

lim���w� � w*.

6 Conclusions

Different penalty terms that are applied for different learning modes demon-
strate various convergence results. For online training, only �� regularizer is
imposed to train the fault-tolerant BPNNs. The weight sequence is uniformly
bounded during training. In addition, the asymptotic convergence results are
obtained due to the absolute randomly chosen for the training samples and the
randomly weight noise.

For batch-mode learning, it is simple to get the convergence results since
the standard gradient descent method are carried out in the training process.

101

Wang J., Yang G., Liu S., Zurada J. M.

Moreover, the learning rate can be selected as a small positive constant. It is a
promising point that the regularizer as introduced during training im-
proves the pruning ability and generalization.

For cyclic and almost cyclic learning, under assumptions deterministic
convergence results have been obtained with and regularizer penal-
ties under specific on the learning rates and the activation functions, respec-
tively.

An observation can be made that a smaller network having similar approx-
imation error for the training samples performs much better on generalization.
Adding penalization terms to an objective function is an efficient way to
prune the redundant hidden neuron. It is important to pay special attention to
the convergence analysis which guarantees the convergent network from theo-
retical point of view. In addition, we note that pruning performance should be
a promising additional aspect to study networks convergence behavior.

Acknowledgments

The authors wish to thank the anonymous reviewers for careful error
proofing of the manuscript and many insightful comments and suggestions
which greatly improved this work.

This project was supported in part by the National Natural Science Foun-
dation of China (No. 61305075), the China Postdoctoral Science Foundation
(No. 2012M520624), Natural Science Foundation of Shandong Province (No.
ZR2013FQ004), the Specialized Research Fund for the Doctoral Program of
Higher Education of China (No. 20130133120014) and the Fundamental Re-
search Funds for the Central Universities (No. 15CX05053A, 15CX08011A).

References

1. Hagan M. T., Demuth H. B., Beale M. H., 1996, Neural networks design. Bos-
ton ; London: PWS.

2. Haykin S. S., 1999, Neural networks : a comprehensive foundation, 2nd ed. Up-
per Saddle River, N.J. ; London: Prentice-Hall.

3. Hinton G. E.Salakhutdinov R. R., Jul 2006, Reducing the dimensionality of data
with neural networks, Science, Vol. 313, No. 5786, pp. 504-507.

4. LeCun Y., Bengio Y., Hinton G., 05/28/ 2015, Deep learning, Nature, Vol. 521,
No. 7553, pp. 436-444.

5. Sutskever I., Hinton G. E., Nov 2008, Deep Narrow Sigmoid Belief Networks
Are Universal Approximators, Neural Computation, Vol. 20, No. 11, pp. 2629-
2636.

102

Convergence Analysis of Multilayer ...

6. Werbos P. J., 1974, Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences, Ph.D., Harvard University, Cambridge, MA.

7. Rumelhart D. E., Hinton G. E., Williams R. J., Oct 9 1986, Learning Represen-
tations by Back-Propagating Errors, Nature, Vol. 323, No. 6088, pp. 533-536.

8. Nakama T., Dec 2009, Theoretical analysis of batch and on-line training for
gradient descent learning in neural networks, Neurocomputing, Vol. 73, No. 1-
3, pp. 151-159.

9. Reed R., 1993, Pruning algorithms-a survey, Neural Networks, IEEE Transac-
tions on, Vol. 4, No. 5, pp. 740-747.

10. Bishop C. M., 1993, Curvature-driven smoothing: a learning algorithm for feed-
forward networks, Neural Networks, IEEE Transactions on, Vol. 4, No. 5, pp.
882-884.

11. Wu W., Shao H., Li Z., 2006, Convergence of batch BP algorithm with penalty
for FNN training, in Neural Information Processing, pp. 562-569.

12. Zhang H., Wu W., Yao M., 2007, Boundedness of a batch gradient method with
penalty for feedforward neural networks, in Proceedings of the 12th WSEAS In-
ternational Conference on Applied Mathematics, pp. 175-178.

13. Zhang H., Wu W., 2009, Boundedness and convergence of online gradient
method with penalty for linear output feedforward neural networks, Neural Pro-
cess Lett, Vol. 29, No. 3, pp. 205-212.

14. Zhang H., Wu W., Liu F., Yao M., 2009, Boundedness and convergence of
online gradient method with penalty for feedforward neural networks, Neural
Networks, IEEE Transactions on, Vol. 20, No. 6, pp. 1050-1054.

15. Shao H., Zheng G., 2011, Boundedness and convergence of online gradient
method with penalty and momentum, Neurocomputing, Vol. 74, No. 5, pp. 765-
770.

16. Wang J., Wu W., Zurada J. M., 2012, Computational properties and conver-
gence analysis of BPNN for cyclic and almost cyclic learning with penalty, Neu-
ral Networks, Vol. 33, pp. 127-135.

17. Yu X., Chen Q., 2012, Convergence of gradient method with penalty for Ridge
Polynomial neural network, Neurocomputing, Vol. 97, pp. 405-409.

18. Fan Q., Zurada J. M., Wu W., 2014, Convergence of online gradient method for
feedforward neural networks with smoothing L 1/2 regularization penalty, Neu-
rocomputing, Vol. 131, pp. 208-216.

19. Wu W., Fan Q., Zurada J. M., Wang J., Yang D., Liu Y., 2014, Batch gradient
method with smoothing L1/2 regularization for training of feedforward neural
networks, Neural Networks, Vol. 50, pp. 72-78.

20. Leung C. S., Tsoi A.-C., Chan L. W., 2001, Two regularizers for recursive least
squared algorithms in feedforward multilayered neural networks, Neural Net-
works, IEEE Transactions on, Vol. 12, No. 6, pp. 1314-1332.

21. Sum J., Chi-Sing L., Ho K., 2012, Convergence Analyses on On-Line Weight
Noise Injection-Based Training Algorithms for MLPs, Neural Networks and
Learning Systems, IEEE Transactions on, Vol. 23, No. 11, pp. 1827-1840.

103

Wang J., Yang G., Liu S., Zurada J. M.

22. Sum J. P., Chi-Sing L., Ho K. I. J., 2012, On-Line Node Fault Injection Training
Algorithm for MLP Networks: Objective Function and Convergence Analysis,
Neural Networks and Learning Systems, IEEE Transactions on, Vol. 23, No. 2,
pp. 211-222.

23. Weigend A. S., Rumelhart D. E., Huberman B., 1991, Generalization by weight-
elimination applied to currency exchange rate prediction, in Neural Networks,
IJCNN 1991 International Joint Conference on, Seattle, pp. 837-841.

24. Weigend A. S.Rumelhart D. E., 1992, Generalization through minimal networks
with application to forecasting: Defense Technical Information Center.

25. Rakitianskaia A., Engelbrecht A., 2014, Weight regularization in particle swarm
optimization neural network training, in Swarm Intelligence (SIS), 2014 IEEE
Symposium on, pp. 1-8.

26. Thomas P., Suhner M. C., 2015, A new multilayer perceptron pruning algorithm
for classification and regression applications, Neural Process Lett, pp. 1-22.

27. Xu Z., Zhang H., Wang Y., Chang X., 2010, L(1/2) regularization, Science Chi-
na-Information Sciences, Vol. 53, No. 6, pp. 1159-1165.

28. Xu Z., Chang X., Xu F., Zhang H., 2012, L(1/2) Regularization: A Thresholding
Representation Theory and a Fast Solver, Neural Networks and Learning Sys-
tems, IEEE Transactions on, Vol. 23, No. 7, pp. 1013-1027.

29. Yuan M., Lin Y., 2006, Model selection and estimation in regression with
grouped variables, Journal of the Royal Statistical Society: Series B (Statistical
Methodology), Vol. 68, pp. 49–67.

