
59

DOCUMENTS PROCESSING IN THE REQUIREMENTS

MANAGEMENT SYSTEM

Tomasz Wydra1, Konrad Grzanek2

1Academy of Management, Łódź, Poland
tomasz.wydra@hotmail.com

2 IT Institute, Academy of Management, Łódź, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Requirements analysis is a highly critical step in software life-cycle. Our
solution to the problem of managing requirements is an embedded domain-
specific language with Clojure playing the role of the host language. The
requirements are placed directly in the source code, but there is an impedance
mismatch between the compilation units and electronic documents, that are the
major carriers of requirements information. This paper presents a coverage for
this problem.

Key words: Requirements engineering, knowledge discovery, documents
processing, PDF

1 Source-code Oriented Requirements Management

According to surveys (like [1]) on software quality, software development
is still more art than science. Researches point out poor requirements man-
agement as one of the most important factors when discussing the possible
reasons. Requirements analysis is a highly critical step in software life-cycle
[2], [3]. The proper and effective requirements management saves the overall
project costs due to the following reasons:
 Requirement errors typically cost well over 10 times more to repair than

other errors.
 Requirement errors typically comprise over 40% of all errors in a software

project.
 Small reductions in the number of requirement errors pay big dividends in

avoided rework costs and schedule delays.

Wydra T., Grzanek. K.

60

Moreover, the requirement managements errors are the most common er-
rors in software projects.

Our previous work [3] describes a requirements management system for
the Clojure programming language [4]. The system allows a programmer to
put the requirements directly into the source code and to manage them using
standard compilation techniques as well as doing it interactively using Lisp
REPL (Read-Eval-Print Loop). Our unique approach is inspired by a homo-
iconicity of the languages from the Lisp family of programming languages (as
stated in [3]). Our solution is an embedded domain-specific language with
Clojure playing the role of the host language. This DSL wins the following for
the analysts, designers and programmers (after [3]):
 Editing source code is a primary activity every programmer undertakes on

every work-day. Putting the act of reading/writing the requirements into
source code increases the comfort of this � sometimes boring � activity.

 It also affects the designers and other people not involved directly in the
implementation phase, because it opens an effective channel of communi-
cation between � for instance � a system analyst and a coder; the analyst
writes a requirement directly in a compilation unit, the programmer reads
it and perform further steps to gain the required functionality.

 The presence of requirements in compilation units allows to interweave
them (their definitions formally speaking) with source code snippets being
their direct implementations or implementation parts. This point is espe-
cially important because an act of locating requirements in pure (not in-
strumented with requirements or requirement-related tags) source code is a
tedious and hard to solve problem. Further works on this can be found in
[5, 6].

 A compilation unit keeping some requirements may be tracked and ma-
naged by a source management and revision control system, such as Git
[7]. An immediate consequence is the ability to manage the requirements
versions, because a requirement change is a change in the compilation unit.
All version control system�s goodies, including the possible encryption
and the overall robustness of a distributed versioning system are there to
be used.

2 The Requirements and Implementations Abstraction

The model of the requirements management system presented here con-
sists of two major types of data called REQ-infos and IMPL-infos. Objects of
those types are essentially maps with the properties as specified in the follow-
ing tables:

Documents Processing in the Requirements ...

61

Table 1. REQ-info properties

:label A label of the requirement.

:doc A documentation part of the requirement describing
some feature or presenting some fact.

:file A name of the compilation unit (source file) in which
the requirement was defined.

:ns A Clojure name-space in which the requirement was de-
fined.

:line The line number in :file in which the requirement was
defined.

:score A search score. The property is present only in the re-
quirement records retrieved via querying.

Table 2. IMPL-info properties

:label A label of the requirement for which the implementation
was defined.

:file A name of the compilation unit (source file) in which
the implementation was defined.

:ns A Clojure name-space in which the implementation was
defined.

:line The line number in :file in which the implementation
was defined.

:score A search score. The property is present only in the
implementation records retrieved via querying1.

REQ-info objects (REQ-infos) represent requirements and the IMPL-
infos � the implementations. Mutual relations between the objects of both
kinds form a graph. The graph may undergo further processing and searching
to build a more comprehensive overview of what has to be implemented and
what has already been achieved, especially when the number of requirements
reaches thousands (not even mentioning number of IMPL-infos in such case).

1 Indexing and querying the REQ-infos and IMPL-infos is performed using the Lucene text

search engine. More on this can be found in [3].

Wydra T., Grzanek. K.

62

The relations between REQ-infos and IMPL-infos are textual and � at least
by now � cannot be created fully automatically. The most important notion is
a label, a textual identifier representing the REQ-info.

3 Labels and References

To define a REQ-info inside a source file one has to use a (defr …) form
that comes with the library. It's list of arguments comes as follows:

[doc & {:keys [labels refs do]
 :or {labels [] refs [] do []}
 :as options}]

The doc argument is the textual content of a requirement, a documentation
part most of the time. do is a collection of actions to perform on the compile-
time, when processing the defr macro instance, with the (probably) most im-
portant persist action. An example use can be seen below2:

(REQ3/defr
 "4.1 The Kinds of Types and Values

 There are two kinds of types in the Java programming language:
 primitive types (§4.2) and reference types (§4.3). There are,
 correspondingly, two kinds of data values that can be stored
 in variables, passed as arguments, returned by methods, and
 operated on: primitive values (§4.2) and reference values
 (§4.3).

 Type:
 PrimitiveType
 ReferenceType"

 :do [REQ/persist])

The example above is a requirement that describes a tiny part of Java type-
system coming from The Java Language Specification, Third Edition [8]. In
this case a label is automatically generated for a REQ-info, but in general a
programmer or a system engineer is allowed to pass a vector of custom labels.
This has the following desirable consequences:
 A label is an identity of a requirement.

2 The REQ library was a subject of substantial changes since it's version described in [3]. This

is why the form has a different shape than the ones in the mentioned paper.
3 Possible assuming a form (:require [kongra.req :as REQ]) was evaluated earlier in

the name-space header.

Documents Processing in the Requirements ...

63

 A REQ-info may be a description of a whole bunch of requirements, when
it contains a number of labels larger than one.

 A requirement may be represented by a collection of REQ-infos and
spread all over a large number of places in the code, possibly separate
compilation units.

 So the cardinality of a relation between a requirements and REQ-infos is
many-to-many.
Another important, but not explicit property of the REQ-info is it's collec-

tion of references. The references are labels of the other REQ-infos refe-
renced from the defined one. The form (defr …) possesses a separate para-
meter called refs, but it does not map directly to a REQ-info property. Instead
the REQ library contains some indirect containers for references avoiding an
unnecessary Lucene indexation of references when storing REQ-infos4.
Labels and textual content (doc) together with references form a complete

graph of informally formulated requirements. Informally because the portions
of information are highly human-dependent and their nature does not undergo
any regulations other than the syntactic ones. One way to get closer to some
automatism in this regard is to:
 Allow the system to generate the labels � a default behavior of the (defr�)

form.
 Use the NLP tools to extract dictionary words (1-grams) and then 2-grams,

3-grams and � in general � N-grams out of the doc part of REQ-infos to
build collections of refs.

Realization of the two postulates will be a subject of some further work.

4 PDF Processing and the Extraction of Textual Content

Although the system allows and encourages the software engineers to put
all requirements (and implementations) information into the compilation
units, initially these portions of textual content are placed in some kind of
electronic documents, with the PDF format being the most widely used. This
section describes one possible solution for the problem of format incompatibi-
lity arising between Clojure compilation units and PDF documents. To be
more precise here, it presents a way to transform an example portion of textu-
al information present in a document into a shape acceptable from the point of
view of creating a (defr…) form in a compilation unit.

We have chosen a PDF document processing library for Java called iText
[9]. This library can include extracting information from the document. It

4 This could also be achieved by configuring Lucene. In one way or the other REQ treats

references as a kind of the second-class citizens (derivatives) when talking about REQ-infos
model.

Wydra T., Grzanek. K.

64

operates on the so-called tokens that are tagged to the types of stored informa-
tion. The following table provides a list of tokens which iText operates on
[10]:

Table 3. Overview of the token types

Token type Symbol Description

NUMBER The current token is a number.

STRING () The current token is a string.

NAME / The current token is a name.

COMMENT % The current token is a comment.

START_ARRAY [The current token starts an array.

END_ARRAY] The current token ends an array.

START_DIC << The current token starts a dictionary.

END_DIC >> The current token ends a dictionary.

REF R The current token ends a reference.

OTHER The current token is probably an operator.

ENDOFFILE There are no more tokens.

The technique used to process the pdf document is to check token by token
for the specified pattern. The Xournal editor [11] was used to highlight data to
be extracted either as a REQ-info doc, label(s) or ref(s), whith the tool called
highlighter. Sample selection can be seen at the following Figure 1.

Figure p

where:
gs � r
x, y �
m, l �

The

for
 by
 PR
 To
 St
 in

F

pattern (selec

gs		x

represents the
� coordinates
� tokens speci

algorithm re

(int i =
yte[] page
RTokeniser
okenType t
tring toke
nt startOf

Documents Pr

Figure 1. Text

ction) that ed

 y		m x y

e beginning of
of subsequent
ifying circums

alizing searc

1; i <= p
eBytes = r
r tokenise
tokenType;
enValue =
fShape = 0

rocessing in the

t highlighted i

ditor creates

l x y l …

f the figure
t elements of f
scribe

ching the doc

pageNumber
reader.get
er = new P
;
null;
0; //
 //
 //

Requirements

n Xournal edi

is shown bel

l x y l S

figure

cument is sho

r; i++) {
tPageConte
PRTokenise

0 = shape
1 = the p
 start

...

itor.

low (1):

own at Listin

ent(i);
er(pageByt

 not foun
ointer pa
 of shape

65

(1)

ng 1.

tes);

nded,
assed
e

Wydra T., Grzanek. K.

66

 while (tokeniser.nextToken()) {
tokenType = tokeniser.getTokenType();
tokenValue = tokeniser.getStringValue();
if (tokenType == PRTokeniser.TokenType.NUMBER) {
 buf.add(tokenValue);

 } else if (tokenType == PRTokeniser.TokenType.OTHER
 & tokenValue.equals("m")

& startOfShape == 0) {
 highlighted.add(buf.get(buf.size() - 2));
 highlighted.add(buf.get(buf.size() - 1));
 startOfShape = 1;

 } else if (tokenType == PRTokeniser.TokenType.OTHER
 & tokenValue.equals("S")

& startOfShape == 1) {
 highlighted.add(buf.get(buf.size() - 2));
 highlighted.add("" + pageNumber);
 startOfShape = 0;

 }
 }
 }

Listing 1. Searching for appropriate tokens

If a pattern is found (1), an index is created which stores information about
the location of selection (coordinates with page number) (2):

	x, y, x, pageNumber,… , x, y, x, pageNumber (2)

where:
x1, - x-coordinate of the beginning of the selection
y1, - y-coordinate of the beginning of the selection
x2, - x-coordinate of the end of the selection
pageNumber, - number of page in the document where the selection is placed

After searching the entire document, the method returns a list of the form
(2), which is used to build the filter. The filter is a rectangle (position) col-
lected sequentially from the index (2). Then the data are retrieved from the
separated area and resulting file is created that contains content originally
selected in the PDF document. The method used is shown at Listing 2

for (int i = 0; i < highlighted.size(); i+=4) {
 int x1 = (int)Double.parseDouble(highlighted.get(i));

 int y = (int)Double.parseDouble(highlighted.get(i+1));
 int x2 = (int)Double.parseDouble(highlighted.get(i+2));
 int pageNumber =
 (int)Integer.parseInt (highlighted.get(i+3));
 int fontSize = 12;

 Rect
 Rect

 Rend
 Text
 stra

 out.

}

Belo
the prog

5 Sum

The
sentials
hanced
mismatc
the maj
lem, yet
or requi
research

tangle siz
tangle rec

derFilter
tExtractio
ategy = ne

.println(P

L

ow there is a
gram on the d

Figu

mmary

goal of the p
of the REQ
and presente
ch� between
or carriers o
t evaluating
irements eng
h.

Documents Pr

ze = reade
ct = new R

filter =
onStrategy
ew Filtere

new Lo
filter

PdfTextExt

Listing 2. Extr

an attached s
document wi

ure 2. Text do

paper was to
Q library, into
ed a very int

n the compila
of requiremen
it's effective
gineer shoul

rocessing in the

er.getPage
Rectangle(
x1, size.
x2, size.

new Regio
y strategy
edTextRend
ocationTex
r);

tractor.ge
reader, p

racting info fro

screenshot s
ith the select

ocument gener

o provide a r
o the directio
teresting solu
ation units a
nts informat

eness, from th
ld (and will

Requirements

eSize(page
(
getTop()-
getTop()

onTextRend
y;
derListene
xtExtracti

etTextFrom
pageNumber

om selected ar

howing the
ted text (Figu

rated from sel

reader with a
ons in which
ution to a pr

and electroni
ion. The me
he point of v
be) be a su

...

eNumber);

-y-fontSiz
- y);

derFilter(

er(
ionStrateg

mPage(
r, strateg

reas

output file (
ure 2).

lection

an insight in
h it is going
roblem of �im
ic documents
ethod covers
view of a pro

ubject of som

67

ze,

(rect);

gy(),

gy));

(result) of

nto the es-
to be en-

mpedance
s, that are
the prob-

ogrammer
me further

Wydra T., Grzanek. K.

68

References

1. Davis A. M., Leffingwell D. A., 1995, Using Requirements Management
to Delivery of Higher Quality Applications, Rational Software Corpora-
tion

2. Dardenne A., van Lamsweerde A., Fickas S., 1993, Goal-directed Re-
quirements Acquisition, Science of Computer Programming, Vol. 20, pp.
3-50

3. Grzanek K., Source Code-Oriented Requirements Management, Com-
puter Methods in Practice, A. Cader., M. Jacymirski, K. Przybyszewski
(eds.), Academic Publishing House EXIT, 2012, Warszawa, pp. 21-45

4. The Clojure Language Website, 2013, http://clojure.org
5. Eisenbarth T., Koschke R., Simon D., 2003, Locating Features in Source

Code, IEEE Transactions on Software Engineering, pp. 210-224
6. Eaddy M., Aho A.V., Antoniol G., Gueheneuc Y.G., 2008, CERBERUS:

Tracing Requirements to Source Code Using Information Retrieval, Dy-
namic Analysis, and Program Analysis, ICPC 2008. The 16th IEEE In-
ternational Conference on Program Comprehension, pp. 53-62

7. Git, Website 2013, http://git-scm.com/
8. Oracle Technology Network, 2013, The Java Language Specification,

http://docs.oracle.com/javase/specs/
9. iText, Website 2013, http://itextpdf.com/
10. Lowagie B., 2007, iText in Action, Creating and Manipulating PDF,

Manning Publications Co., ISBN 1932394796
11. Xournal, Website 2013, http://xournal.sourceforge.net/

