DOCUMENTS PROCESSING IN THE REQUIREMENTS
MANAGEMENT SYSTEM

Tomasz Wydra', Konrad Grzanek®

' Academy of Management, £.6dz, Poland
tomasz.wydra@hotmail.com

21T Institute, Academy of Management, £.6dz, Poland
kgrzanek@spoleczna.pl, kongra@gmail.com

Abstract

Requirements analysis is a highly critical step in software life-cycle. Our
solution to the problem of managing requirements is an embedded domain-
specific language with Clojure playing the role of the host language. The
requirements are placed directly in the source code, but there is an impedance
mismatch between the compilation units and electronic documents, that are the
major carriers of requirements information. This paper presents a coverage for
this problem.

Key words: Requirements engineering, knowledge discovery, documents
processing, PDF

1 Source-code Oriented Requirements Management

According to surveys (like [1]) on software quality, software development
is still more art than science. Researches point out poor requirements man-
agement as one of the most important factors when discussing the possible
reasons. Requirements analysis is a highly critical step in software life-cycle
[2], [3]- The proper and effective requirements management saves the overall
project costs due to the following reasons:

— Requirement errors typically cost well over 10 times more to repair than
other errors.

— Requirement errors typically comprise over 40% of all errors in a software
project.

— Small reductions in the number of requirement errors pay big dividends in
avoided rework costs and schedule delays.

59

Wydra T., Grzanek. K.

Moreover, the requirement managements errors are the most common er-
rors in software projects.

Our previous work [3] describes a requirements management system for
the Clojure programming language [4]. The system allows a programmer to
put the requirements directly into the source code and to manage them using
standard compilation techniques as well as doing it interactively using Lisp
REPL (Read-Eval-Print Loop). Our unique approach is inspired by a homo-
iconicity of the languages from the Lisp family of programming languages (as
stated in [3]). Our solution is an embedded domain-specific language with
Clojure playing the role of the host language. This DSL wins the following for
the analysts, designers and programmers (after [3]):

— Editing source code is a primary activity every programmer undertakes on
every work-day. Putting the act of reading/writing the requirements into
source code increases the comfort of this — sometimes boring — activity.

— It also affects the designers and other people not involved directly in the
implementation phase, because it opens an effective channel of communi-
cation between — for instance — a system analyst and a coder; the analyst
writes a requirement directly in a compilation unit, the programmer reads
it and perform further steps to gain the required functionality.

— The presence of requirements in compilation units allows to interweave
them (their definitions formally speaking) with source code snippets being
their direct implementations or implementation parts. This point is espe-
cially important because an act of locating requirements in pure (not in-
strumented with requirements or requirement-related tags) source code is a
tedious and hard to solve problem. Further works on this can be found in
[5, 6].

— A compilation unit keeping some requirements may be tracked and ma-
naged by a source management and revision control system, such as Git
[7]. An immediate consequence is the ability to manage the requirements
versions, because a requirement change is a change in the compilation unit.
All version control system’s goodies, including the possible encryption
and the overall robustness of a distributed versioning system are there to
be used.

2 The Requirements and Implementations Abstraction

The model of the requirements management system presented here con-
sists of two major types of data called REQ-infos and IMPL-infos. Objects of
those types are essentially maps with the properties as specified in the follow-
ing tables:

60

Documents Processing in the Requirements ...

Table 1. REQ-info properties

:label A label of the requirement.

:doc A documentation part of the requirement describing
some feature or presenting some fact.

sfile A name of the compilation unit (source file) in which
the requirement was defined.

:ns A Clojure name-space in which the requirement was de-
fined.

:line The line number in :file in which the requirement was
defined.

:score A search score. The property is present only in the re-

quirement records retrieved via querying.

Table 2. IMPL-info properties

:label A label of the requirement for which the implementation
was defined.

sfile A name of the compilation unit (source file) in which
the implementation was defined.

:ns A Clojure name-space in which the implementation was
defined.

:line The line number in :file in which the implementation

was defined.

:score A search score. The property is present only in the
implementation records retrieved via querying!.

REQ-info objects (REQ-infos) represent requirements and the IMPL-
infos — the implementations. Mutual relations between the objects of both
kinds form a graph. The graph may undergo further processing and searching
to build a more comprehensive overview of what has to be implemented and
what has already been achieved, especially when the number of requirements
reaches thousands (not even mentioning number of IMPL-infos in such case).

1 Indexing and querying the REQ-infos and IMPL-infos is performed using the Lucene text
search engine. More on this can be found in [3].

61

Wydra T., Grzanek. K.

The relations between REQ-infos and IMPL-infos are textual and — at least
by now — cannot be created fully automatically. The most important notion is
a label, a textual identifier representing the REQ-info.

3 Labels and References

To define a REQ-info inside a source file one has to use a (defr ..) form
that comes with the library. It's list of arguments comes as follows:

[doc & {:keys [labels refs do]
:or {labels [] refs [] do []}
:as options}]

The doc argument is the textual content of a requirement, a documentation
part most of the time. do is a collection of actions to perform on the compile-
time, when processing the defir macro instance, with the (probably) most im-
portant persist action. An example use can be seen below?:

(REQ3/defr
"4.1 The Kinds of Types and Values

There are two kinds of types in the Java programming language:
primitive types (§4.2) and reference types (§4.3). There are,
correspondingly, two kinds of data values that can be stored
in variables, passed as arguments, returned by methods, and
operated on: primitive values ($4.2) and reference values
(§4.3) .

Type:
PrimitiveType
ReferenceType"

:do [REQ/persist])

The example above is a requirement that describes a tiny part of Java type-
system coming from The Java Language Specification, Third Edition [8]. In
this case a label is automatically generated for a REQ-info, but in general a
programmer or a system engineer is allowed to pass a vector of custom labels.
This has the following desirable consequences:

— A label is an identity of a requirement.

2 The REQ library was a subject of substantial changes since it's version described in [3]. This
is why the form has a different shape than the ones in the mentioned paper.

3 Possible assuming a form (:require [kongra.req :as REQ]) was evaluated earlier in
the name-space header.

62

Documents Processing in the Requirements ...

— A REQ-info may be a description of a whole bunch of requirements, when
it contains a number of labels larger than one.

— A requirement may be represented by a collection of REQ-infos and
spread all over a large number of places in the code, possibly separate
compilation units.

— So the cardinality of a relation between a requirements and REQ-infos is
many-to-many.

Another important, but not explicit property of the REQ-info is it's collec-
tion of references. The references are labels of the other REQ-infos refe-
renced from the defined one. The form (defr ..) possesses a separate para-
meter called refs, but it does not map directly to a REQ-info property. Instead
the REQ library contains some indirect containers for references avoiding an
unnecessary Lucene indexation of references when storing REQ-infos*.

Labels and textual content (doc) together with references form a complete
graph of informally formulated requirements. Informally because the portions
of information are highly human-dependent and their nature does not undergo
any regulations other than the syntactic ones. One way to get closer to some
automatism in this regard is to:

— Allow the system to generate the labels — a default behavior of the (defr...)
form.

— Use the NLP tools to extract dictionary words (1-grams) and then 2-grams,
3-grams and — in general — N-grams out of the doc part of REQ-infos to
build collections of refs.

Realization of the two postulates will be a subject of some further work.

4 PDF Processing and the Extraction of Textual Content

Although the system allows and encourages the software engineers to put
all requirements (and implementations) information into the compilation
units, initially these portions of textual content are placed in some kind of
electronic documents, with the PDF format being the most widely used. This
section describes one possible solution for the problem of format incompatibi-
lity arising between Clojure compilation units and PDF documents. To be
more precise here, it presents a way to transform an example portion of textu-
al information present in a document into a shape acceptable from the point of
view of creating a (defr..) form in a compilation unit.

We have chosen a PDF document processing library for Java called i7ext
[9]. This library can include extracting information from the document. It

4 This could also be achieved by configuring Lucene. In one way or the other REQ treats
references as a kind of the second-class citizens (derivatives) when talking about REQ-infos
model.

63

Wydra T., Grzanek. K.

operates on the so-called tokens that are tagged to the types of stored informa-
tion. The following table provides a list of tokens which iText operates on
[10]:

Table 3. Overview of the token types

Token type Symbol Description

NUMBER The current token is a number.
STRING O) The current token is a string.
NAME / The current token is a name.
COMMENT % The current token is a comment.
START ARRAY [The current token starts an array.
END_ARRAY] The current token ends an array.
START DIC << The current token starts a dictionary.
END DIC >> The current token ends a dictionary.
REF R The current token ends a reference.
OTHER The current token is probably an operator.
ENDOFFILE There are no more tokens.

The technique used to process the pdf document is to check token by token
for the specified pattern. The Xournal editor [11] was used to highlight data to
be extracted either as a REQ-info doc, label(s) or ref(s), whith the tool called
highlighter. Sample selection can be seen at the following Figure 1.

64

Documents Processing in the Requirements ...

> Xournal - + x
File Edit View Journal Tools Options Help
O o O %Y 0 /|- e « » » Q@ (3 @ Q Q [

PO TOm=wad Q@ -femEENEEEN -

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus sed ante felis, vel
scelerisque leo. Nulla interdum elit in mi viverra rutrum. Mauris lacus justo, euismod
eget pharetra vel, lobortis sed mi. Cras accumsan fringilla ultricies. Phasellus eu urna
consequat orci lacinia vestibulum. Class aptent taciti sociosqu ad litora torgquent per
conubia nostra, per inceptos himenaeos. Mauris id semper dui.

Integer hendrerit scelerisque rhoncus. Pellentesque commodo lobortis augue, eu
molestie nibh vestibulum dignissim. Suspendisse condimentum lobortis mauris, in
dapibus purus vestibulum ac. Class aptent taciti sociosgu ad litora torquent per
conubia nostra, per inceptos himenaeos. Nam mi arcu, porttitor id vulputate guis,
mattis vel sem. Ut vitae ultricies velit. Nunc sem libero, laoreet eu rhoncus eu, tincidunt
vel tellus. Nulla imperdiet, lorem a dignissim sodales, nunc nunc imperdiet est, vitae
ullamcorper libero nisl non est. Suspendisse iaculis est nec felis egestas malesuada.
Pellentesque et mi lorem

Vestibulum sodales lorem ut felis pellentesque eget hendrerit justo tincidunt. Sed
commodo placerat viverra. In non augue nisl, sed rhoncus augue. Donec non libero
sed lacus bibendum facilisis ac non tellus. Etiam tellus neque, scelerisque et fringilla sit
amet, dictum et lorem. Morbi ultricies ultrices ante non volutpat. Nullam quis odio velit.
Mauris at mi dictum risus sodales sollicitudin quis sit amet dui. Nunc a quam in felis
lobortis faucibus. Curabitur et leo quis odio iaculis vehicula. Suspendisse urna tellus,
viverra nec scelerisque sed, pulvinar ut erat. Ut vitae leo et tortor ornare tempor. Etiam
nibh enim, tristique sagittis commodo ut, sodales a elit. Curabitur ut nibh est.

“ [) >

Page |1 ' of1 Layer: |Layerl *

Figure 1. Text highlighted in Xournal editor.
Figure pattern (selection) that editor creates is shown below (1):

gs X1yy MmX,y, 1 x3y3 1 .. 1 x,y, 1S (D)

where:
gs — represents the beginning of the figure
X, y — coordinates of subsequent elements of figure
m, | — tokens specifying circumscribe

The algorithm realizing searching the document is shown at Listing 1.

for (int i = 1; i <= pageNumber; i++) {
byte[] pageBytes = reader.getPageContent (i) ;
PRTokeniser tokeniser = new PRTokeniser (pageBytes);
TokenType tokenType;
String tokenValue = null;

int startOfShape = 0; // 0 = shape not founded,
// 1 = the pointer passed
// start of shape

65

Wydra T., Grzanek. K.

while (tokeniser.nextToken()) {
tokenType = tokeniser.getTokenType () ;
tokenValue = tokeniser.getStringValue()
if (tokenType == PRTokeniser.TokenType.NUMBER) {
buf.add(tokenvValue) ;
} else if (tokenType == PRTokeniser.TokenType.OTHER

& tokenValue.equals ("m")

& startOfShape == 0) {
highlighted.add (buf.get (buf.size() - 2));
highlighted.add (buf.get (buf.size() - 1));
startOfShape = 1;

} else if (tokenType == PRTokeniser.TokenType.OTHER
& tokenValue.equals ("S")
& startOfShape == 1) {
highlighted.add (buf.get (buf.size() - 2));

highlighted.add ("" + pageNumber) ;
startOfShape = 0;

Listing 1. Searching for appropriate tokens

If a pattern is found (1), an index is created which stores information about
the location of selection (coordinates with page number) (2):

X1, V1, X2, pageNumber, ..., Xp, Vn, Xn4+1, PageNumber (2)

where:
X1, - X-coordinate of the beginning of the selection
y1, - y-coordinate of the beginning of the selection
X,, - X-coordinate of the end of the selection
pageNumber, - number of page in the document where the selection is placed

After searching the entire document, the method returns a list of the form
(2), which is used to build the filter. The filter is a rectangle (position) col-
lected sequentially from the index (2). Then the data are retrieved from the
separated area and resulting file is created that contains content originally
selected in the PDF document. The method used is shown at Listing 2

for (int i = 0; 1 < highlighted.size(); i+=4) {

int x1 (int) Double.parseDouble (highlighted.get (1)) ;
int y = (int)Double.parseDouble (highlighted.get (i+1));
int x2 = (int)Double.parseDouble (highlighted.get (i+2));

int pageNumber =
(int) Integer.parselInt (highlighted.get (i+3))
int fontSize = 12;

66

Documents Processing in the Requirements ...

Rectangle size reader.getPageSize (pageNumber) ;
Rectangle rect = new Rectangle(
x1, size.getTop()-y-fontSize,
x2, size.getTop() - y):

RenderFilter filter = new RegionTextRenderFilter (rect);
TextExtractionStrategy strategy;
strategy = new FilteredTextRenderListener (
new LocationTextExtractionStrategy(),
filter);

out.println (PdfTextExtractor.getTextFromPage (
reader, pageNumber, strategy));

Listing 2. Extracting info from selected areas

Below there is an attached screenshot showing the output file (result) of
the program on the document with the selected text (Figure 2).

LoremipsumH.pdftxt

Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Mauris id semper dui.

Suspendisse condimentum lobortis mauris, in

dapibus purus vestibulum ac. Class aptent taciti sociosqu ad litora torquent per
conubia nostra, per inceptos himenaeos. Nam mi arcu, porttitor id vulputate quis,
mattis vel sem.

Pellentesque et mi lorem

Figure 2. Text document generated from selection

5 Summary

The goal of the paper was to provide a reader with an insight into the es-
sentials of the REQ library, into the directions in which it is going to be en-
hanced and presented a very interesting solution to a problem of “impedance
mismatch” between the compilation units and electronic documents, that are
the major carriers of requirements information. The method covers the prob-
lem, yet evaluating it's effectiveness, from the point of view of a programmer
or requirements engineer should (and will be) be a subject of some further
research.

67

Wydra T., Grzanek. K.

References

1. Davis A. M., Leffingwell D. A., 1995, Using Requirements Management
to Delivery of Higher Quality Applications, Rational Software Corpora-
tion

2. Dardenne A., van Lamsweerde A., Fickas S., 1993, Goal-directed Re-
quirements Acquisition, Science of Computer Programming, Vol. 20, pp.
3-50

3. Grzanek K., Source Code-Oriented Requirements Management, Com-
puter Methods in Practice, A. Cader., M. Jacymirski, K. Przybyszewski
(eds.), Academic Publishing House EXIT, 2012, Warszawa, pp. 21-45

4. The Clojure Language Website, 2013, http://clojure.org

5. Eisenbarth T., Koschke R., Simon D., 2003, Locating Features in Source
Code, IEEE Transactions on Software Engineering, pp. 210-224

6. Eaddy M., Aho A.V., Antoniol G., Gueheneuc Y.G., 2008, CERBERUS:
Tracing Requirements to Source Code Using Information Retrieval, Dy-
namic Analysis, and Program Analysis, ICPC 2008. The 16th IEEE In-
ternational Conference on Program Comprehension, pp. 53-62

7. Git, Website 2013, http://git-scm.com/

8. Oracle Technology Network, 2013, The Java Language Specification,
http://docs.oracle.com/javase/specs/

9. iText, Website 2013, http://itextpdf.com/

10. Lowagie B., 2007, iText in Action, Creating and Manipulating PDF’,
Manning Publications Co., ISBN 1932394796

11. Xournal, Website 2013, http://xournal.sourceforge.net/

68

