Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This review will present a collection of previous research studies in the field of enhanced piezoelectric properties. At first, an introduction will be provided about the field of energy, methods of harvesting energy, the field of employing piezoelectricity, and also the concept of piezoelectricity to convert mechanical energy into electrical energy when used as a sensor. It can be employed as an actuator that can convert electrical energy into mechanical energy. This paper will provide an overview of techniques for enhancing the characteristics of piezoelectric materials. There are many of these methods, such as composite and hybrid materials, partial size, shape, and dimension, compressibility, lamination, 3D printed piezoelectric, coating, functional grid materials, hybrid systems, and more. For each method, different materials were used to prepare the piezoelectric. These materials can be broken down into several groups, such as smart materials that have piezoelectric effects, shape memory effects, and pyroelectric effects; reinforcement materials as Multi-Walled Carbon Nanotubes (MWCNT), CFRP (Carbon Fiber-Reinforced Polymer), or GFRP (Glass Fiber-Reinforced Polymer); matrix materials as UV-curable resin, and Polydimethylsiloxane (PDMS); materials that help with the distribution process as N,N-dimethylformamide (DMF); and electrode materials as copper, platinum, and graphene. Additionally, the size of the added materials was defined, as most are nanomaterials. We will display the hybrid system, which is multifunctional. It is considered an important aspect of future development. In this part, different effects are combined into one application. For example, the smart scaffold combines the piezoelectric and shape memory effects. The real benefit of the research is to make the material's properties work better in general, and piezoelectricity works better in particular. These improvements can be done by studying each method on its own and then trying to combine some improvement methods in future research to make piezoelectricity work better and make it useful in more situations.
Wydawca
Rocznik
Tom
Strony
41--69
Opis fizyczny
Bibliogr. 117 poz., fig., tab.
Twórcy
autor
- Department of Mechanical Engineering, College of Engineering, Al-Nahrain University Al-Jadriya, Baghdad Governorate, Iraq
autor
- Unmanned Aerial Vehicle (UAV) Eng. Dep., College of Engineering, Al-Nahrain University, Baghdad, Iraq
Bibliografia
- 1. Megdich, A., Habibi, M. and Laperrière, L. A review on 3D printed piezoelectric energy harvesters: materials, 3D printing techniques, and applications. Materials Today Communications, 2023; 35: 105541.
- 2. Banerjee, S., Bairagi, S. and Ali, S.W. A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceramics International, 2021; 47(12): 16402–16421.
- 3. Chalasani, S. and Conrad, J.M. A survey of energy harvesting sources for embedded systems. in IEEE SoutheastCon 2008. 2008. IEEE.
- 4. Chen, J.-X., et al. Piezoelectric property enhancement of PZT/Poly (vinylidenefluoride-co-trifluoroethylene) hybrid films for flexible piezoelectric energy harvesters. ACS omega, 2021; 7(1): 793–803.
- 5. Li, S. and Lipson, H. Vertical-stalk flapping-leaf generator for wind energy harvesting. in Smart materials, adaptive structures and intelligent systems. 2009.
- 6. Weimer, M.A., Paing, T.S. and Zane, R.A. Remote area wind energy harvesting for low-power autonomous sensors. in 2006 37th IEEE Power Electronics Specialists Conference. 2006. IEEE.
- 7. Li, S., Yuan, J. and Lipson, H. Ambient wind energy harvesting using cross-flow fluttering. Journal of applied physics, 2011; 109(2).
- 8. Wang, K., et al. A comprehensive review of geothermal energy extraction and utilization in oilfields. Journal of Petroleum Science and Engineering, 2018; 168: 465–477.
- 9. Glassley, W\.E. Geothermal energy: renewable energy and the environment. 2014; CRC press.
- 10. Østergaard, P.A. and Lund, H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Applied Energy, 2011; 88(2): 479–487.
- 11. Al-Qadami, E.H.H., Mustaffa, Z. and Al-Atroush, M.E. Evaluation of the pavement geothermal energy harvesting technologies towards sustainability and renewable energy. Energies, 2022; 15(3): 1201.
- 12. Yoon, E.-J. and Yu, C.-G. Power management circuits for self-powered systems based on micro-scale solar energy harvesting. International Journal of Electronics, 2016; 103(3): 516–529.
- 13. Raghunathan, V., et al. Design considerations for solar energy harvesting wireless embedded systems. in IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005. 2005. IEEE.
- 14. Abdin, Z., et al. Solar energy harvesting with the application of nanotechnology. Renewable and sustainable energy reviews, 2013; 26: 837–852.
- 15. Pobering, S. and Schwesinger, N. A novel hydropower harvesting device. in 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04). 2004. IEEE.
- 16. Maas, J. and Graf, C. Dielectric elastomers for hydro power harvesting. Smart Materials and Structures, 2012; 21(6): 064006.
- 17. Vu, D.L., Le, C.D. and Ahn, K.K. Functionalized graphene oxide/polyvinylidene fluoride composite membrane acting as a triboelectric layer for hydropower energy harvesting. International Journal of Energy Research, 2022; 46(7): 9549–9559.
- 18. Jiang, D., et al. Water-solid triboelectric nanogenerators: An alternative means for harvesting hydropower. Renewable and Sustainable Energy Reviews, 2019; 115: 109366.
- 19. Field, C.B., Campbell, J.E. and Lobell, D.B. Biomass energy: the scale of the potential resource. Trends in ecology & evolution, 2008; 23(2): 65–72.
- 20. Ko, C.-H., et al. Carbon sequestration potential via energy harvesting from agricultural biomass residues in Mekong River basin, Southeast Asia. Renewable and Sustainable Energy Reviews, 2017; 68: 1051–1062.
- 21. Singh, R. and Setiawan, A.D. Biomass energy policies and strategies: Harvesting potential in India and Indonesia. Renewable and Sustainable Energy Reviews, 2013; 22: 332–345.
- 22. Abbas, D., et al. Guidelines for harvesting forest biomass for energy: A synthesis of environmental considerations. Biomass and Bioenergy, 2011; 35(11): 4538–4546.
- 23. Bijak, J., et al. A 2-dof kinematic chain analysis of a magnetic spring excited by vibration generator based on a neural network design for energy harvesting applications. Inventions, 2023; 8(1): 34.
- 24. Bijak, J., et al. Magnetic flux density analysis of magnetic spring in energy harvester by hall-effect sensors and 2d magnetostatic fe model. Journal of Magnetism and Magnetic Materials, 2023; 579: 170796.
- 25. Sciuto, G.L., et al. Deep learning model for magnetic flux density prediction in magnetic spring on the vibration generator. IEEE Access, 2024.
- 26. Sciuto, G.L., et al. Displacement and magnetic induction measurements of energy harvester system based on magnetic spring integrated in the electromagnetic vibration generator. Journal of Vibration Engineering & Technologies, 2024; 12(3): 3305–3320.
- 27. Challa, V.R., et al. A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures, 2008; 17(1): 015035.
- 28. Gammaitoni, L., Neri, I. and Vocca, H. Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 2009; 94(16).
- 29. Zuo, L. and Tang, X. Large-scale vibration energy harvesting. Journal of intelligent material systems and structures, 2013; 24(11): 1405–1430.
- 30. Beeby, S.P., et al. A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and microengineering, 2007; 17(7): 1257.
- 31. Erturk, A., Hoffmann, J. and Inman, D.J. A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009. 94(25).
- 32. Kim, H.S., Kim, J.-H. and Kim, J. A review of piezoelectric energy harvesting based on vibration. International journal of precision engineering and manufacturing, 2011; 12: 1129–1141.
- 33. Sodano, H.A., Inman, D.J. and Park, G. A review of power harvesting from vibration using piezoelectric materials. Shock and Vibration Digest, 2004; 36(3): 197–206.
- 34. Sodano, H.A., Park, G. and Inman, D. Estimation of electric charge output for piezoelectric energy harvesting. Strain, 2004; 40(2): 49–58.
- 35. Guan, M. and Liao, W. On the efficiencies of piezoelectric energy harvesting circuits towards storage devicevoltages. Smart Materials and Structures, 2007; 16(2): 498.
- 36. Mateu, L. and Moll, F. Review of energy harvesting techniques and applications for microelectronics. Microtechnologies for the New Millennium 2005; 5837: SPIE.
- 37. Mateu, L. and Moll, F. Review of energy harvesting techniques and applications for microelectronics. in VLSI Circuits and Systems II. 2005. SPIE.
- 38. Banerjee, S., Bairagi, S., & Ali, S. W. (2021). A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceramics International, 47(12), 16402–16421.
- 39. Sobianin, I., S.D. Psoma, and Tourlidakis, A. A 3D-printed piezoelectric microdevice for human energy harvesting for wearable biosensors. Micromachines, 2024; 15(1): 118.
- 40. Rayegani, A., et al. Recent advances in self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators. Biosensors, 2022; 13(1): 37.
- 41. Mahanty, B., et al. All-fiber pyro-and piezo-electric nanogenerator for IoT based self-powered healthcare monitoring. Materials Advances, 2021; 2(13): 4370–4379.
- 42. Iqbal, M., et al. Multimodal hybrid piezoelectric-electromagnetic insole energy harvester using PVDF generators. Electronics, 2020; 9(4): 635.
- 43. Sezer, N. and Koç, M. A comprehensive review on the state-of-the-art of piezoelectric energy harvesting. Nano energy, 2021; 80: 105567.
- 44. Zhao, J., et al. A review of piezoelectric metamaterials for underwater equipment. Frontiers in Physics, 2022; 10: 1068838.
- 45. Bhadwal, N., Ben Mrad, R. and Behdinan, K. Review of zinc oxide piezoelectric nanogenerators: piezoelectric properties, composite structures and power output. Sensors, 2023; 23(8): 3859.
- 46. Sarker, M.R., et al. Review of piezoelectric energy harvesting system and application of optimization techniques to enhance the performance of the harvesting system. Sensors and Actuators A: Physical, 2019; 300: 111634.
- 47. Safaei, M., Sodano, H.A. and Anton, S.R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018). Smart materials and structures, 2019; 28(11): 113001.
- 48. Wang, Q. and Wu, N. A review on structural enhancement and repair using piezoelectric materials and shape memory alloys. Smart Materials and Structures, 2011; 21(1): 013001.
- 49. Park, J., et al. A review on recent advances in piezoelectric ceramic 3D printing. in Actuators. 2023. MDPI.
- 50. Lee, D.-G.S., J.; Kim, H.S.; Hur, S.; Sun, S.; Jang, J.-S.; Chang, S.; Jung, I.; Nahm, S.; Kang, H.; et al. Autonomous Resonance Tuning Mechanism for Environmental Adaptive Energy Harvesting. Adv. Sci. 2023; 10, 2205179.
- 51. Briscoe, J.D., S. 2.1 Background. In Nanostructured Piezoelectric Energy Harvesters, 1st ed.; Springer and G. International Publishing: Berlin/Heidelberg, 2014; 3–4.
- 52. Erturk, A. and Inman, D. 1.4 Summary of the Theory of Linear Piezoelectricity. Piezoelectric Energy Harvesting, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011: 9–12.
- 53. De Almeida, B.V. and Pavanello, R. Topology optimization of the thickness profile of bimorph piezoelectric energy harvesting devices. Journal of Applied and Computational Mechanics, 2019; 5(1): 113–127.
- 54. Holman, J.P. Experimental Methods for Engineers. 2012: McGraw-Hill/Connect Learn Succeed.
- 55. Covaci, C. and Gontean, A. Piezoelectric energy harvesting solutions: A review. Sensors, 2020; 20(12): 3512.
- 56. Lippmann, G. Principe de la conservation de l’électricité, ou second principe de la théorie des phénomènes électriques. J. Phys. Theor. Appl., 1881; 10(1): 381–394.
- 57. Koh, S.J.A., Zhao, X. and Suo, Z. Maximal energy that can be converted by a dielectric elastomer generator. Applied Physics Letters, 2009; 94(26).
- 58. Soin, N., Anand, S.C. and Shah, T.H. Energy harvesting and storage textiles, in Handbook of Technical Textiles. Woodhead Publishing. 2016; 357–396.
- 59. Zhang, C., Sun, H. and Zhu, Q. Preparation and property enhancement of poly (Vinylidene Fluoride) (PVDF)/lead zirconate titanate (PZT) composite piezoelectric films. Journal of Electronic Materials, 2021; 50: 6426–6437.
- 60. Chinya, I., Pal, A. and Sen, S. Polyglycolated zinc ferrite incorporated poly (vinylidene fluoride) (PVDF) composites with enhanced piezoelectric response. Journal of Alloys and Compounds, 2017; 722: 829–838.
- 61. Anand, A. and Bhatnagar, M. Effect of sodium niobate (NaNbO3) nanorods on β-phase enhancement in polyvinylidene fluoride (PVDF) polymer. Materials Research Express, 2019; 6(5): 055011.
- 62. Ganesh, R.S., et al. Microstructure, structural, optical and piezoelectric properties of BiFeO3 nanopowder synthesized from sol-gel. Current Applied Physics, 2017; 17(3): 409–416.
- 63. Ren, X., et al. Flexible lead-free BiFeO3/PDMS-based nanogenerator as piezoelectric energy harvester. ACS applied materials & interfaces, 2016; 8(39): 26190–26197.
- 64. Wang, F., et al. High quality barium titanate nanofibers for flexible piezoelectric device applications. Sensors and Actuators A: Physical, 2015; 233: 195–201.
- 65. Wang, A., et al. Self-powered wearable pressure sensors with enhanced piezoelectric properties of aligned P (VDF-TrFE)/MWCNT composites for monitoring human physiological and muscle motion signs. Nanomaterials, 2018; 8(12): 1021.
- 66. Siddiqui, S., et al. High-performance flexible lead-free nanocomposite piezoelectric nanogenerator for biomechanical energy harvesting and storage. Nano Energy, 2015; 15: 177–185.
- 67. Shoorangiz, M., Sherafat, Z. and Bagherzadeh, E. CNT loaded PVDF-KNN nanocomposite films with enhanced piezoelectric properties. Ceramics International, 2022; 48(11): 15180–15188.
- 68. Bairagi, S. and Ali, S.W. Investigating the role of carbon nanotubes (CNTs) in the piezoelectric performance of a PVDF/KNN-based electrospun nanogenerator. Soft Matter, 2020; 16(20): 4876–4886.
- 69. Amoozegar, V., Sherafat, Z. and Bagherzadeh, E. Enhanced dielectric and piezoelectric properties in potassium sodium niobate/polyvinylidene fluoride composites using nano-silicon carbide as an additive. Ceramics International, 2021; 47(20): 28260–28267.
- 70. Maruyama, K., et al. Electromechanical characterization and kinetic energy harvesting of piezoelectric nanocomposites reinforced with glass fibers. Composites Science and Technology, 2022; 223: 109408.
- 71. Singh, H.H., Singh, S. and Khare, N. Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal. Composites Science and Technology, 2017; 149: 127–133.
- 72. Yan, J. and Jeong, Y.G. Roles of carbon nanotube and BaTiO3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Composites Science and Technology, 2017; 144: 1–10.
- 73. Chen, X., et al. Effect of the particle size on the performance of BaTiO3 piezoelectric ceramics produced by additive manufacturing. Ceramics International, 2022; 48(1): 1285–1292.
- 74. Renteria, A., et al. Particle size influence on material properties of BaTiO3 ceramics fabricated using freeze-form extrusion 3D printing. Materials Research Express, 2019; 6(11): 115211.
- 75. Renteria, A., et al. Influence of bimodal particle distribution on material properties of BaTiO3 fabricated by paste extrusion 3D printing. Ceramics International, 2021; 47(13): 18477–18486.
- 76. Li, J.-W., et al. Enhanced piezoelectric properties of poly (vinylidenefluoride-co-trifluoroethylene)/carbon-based nanomaterial composite films for pressure sensing applications. Polymers, 2020; 12(12): 2999.
- 77. Ponraj, B., Bhimireddi, R. and Varma, K. Effect of nano-and micron-sized K 0.5 Na 0.5 NbO 3 fillers on the dielectric and piezoelectric properties of PVDF composites. Journal of Advanced Ceramics, 2016; 5: 308–320.
- 78. Sun, J., et al. Enhanced mechanical energy conversion with selectively decayed wood. Science Advances, 2021; 7(11): eabd9138.
- 79. Sun, J., et al. Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS nano, 2020; 14(11): 14665–14674.
- 80. Yu, Y., et al. Carbon Fiber-Reinforced Piezoelectric Nanocomposites: Design, Fabrication and Evaluation for Damage Detection and Energy Harvesting. Composites Part A: Applied Science and Manufacturing, 2023; 172: 107587.
- 81. Yu, Y. and Narita, F. Evaluation of electromechanical properties and conversion efficiency of piezoelectric nanocomposites with carbon-fiber-reinforced polymer electrodes for stress sensing and energy harvesting. Polymers, 2021; 13(18): 3184.
- 82. Wang, Z., et al. Potassium sodium niobate lead-free piezoelectric nanocomposite generators based on carbon-fiber-reinforced polymer electrodes for energy-harvesting structures. Composites Science and Technology, 2020; 199: 108331.
- 83. Kurita, H., et al. Fabrication and mechanical properties of carbon-fiber-reinforced polymer composites with lead-free piezoelectric nanoparticles. Sens. Mater, 2020; 32(7).
- 84. Narita, F., Nagaoka, H. and Wang, Z. Fabrication and impact output voltage characteristics of carbon fiber reinforced polymer composites with lead-free piezoelectric nano-particles. Materials Letters, 2019; 236: 487–490.
- 85. Tien, C.M.T. and Goo, N.S. Use of a piezocomposite generating element in energy harvesting. Journal of Intelligent Material Systems and Structures, 2010; 21(14): 1427–1436.
- 86. Zeng, Y., et al. 3D-printing piezoelectric composite with honeycomb structure for ultrasonic devices. Micromachines, 2020; 11(8): 713.
- 87. Strangis, G., et al. 3D Printed Piezoelectric BaTiO3/Polyhydroxybutyrate Nanocomposite Scaffolds for Bone Tissue Engineering. Bioengineering, 2024; 11(2): 193.
- 88. Srinivasaraghavan Govindarajan, R., et al. Polymer nanocomposite sensors with improved piezoelectric properties through additive manufacturing. Sensors, 2024; 24(9): 2694.
- 89. Hall, S.E., et al. Paste extrusion 3D printing and characterization of lead zirconate titanate piezoelectric ceramics. Ceramics International, 2021; 47(15): 22042–22048.
- 90. Sotov, A., et al. LCD-SLA 3D printing of BaTiO3 piezoelectric ceramics. Ceramics International, 2021; 47(21): 30358–30366.
- 91. Mystiridou, E., Patsidis, A.C. and Bouropoulos, N. Development and characterization of 3D printed multifunctional bioscaffolds based on PLA/PCL/HAp/BaTiO3 composites. Applied Sciences, 2021; 11(9): 4253.
- 92. Wang, Z., et al. 3D-printed flexible, Ag-coated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion. Nano Energy, 2020; 73: 104737.
- 93. Chen, Z., et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy, 2016; 27: 78–86.
- 94. Gaytan, S., et al. Fabrication of barium titanate by binder jetting additive manufacturing technology. Ceramics International, 2015; 41(5): 6610–6619.
- 95. Li, G., et al. 3D‐Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration. Small, 2023; 19(40): 2302927.
- 96. Chen, H., et al. Smart composites of piezoelectric particles and shape memory polymers for actuation and nanopositioning. Composites Science and Technology, 2018; 163: 123–132.
- 97. Suo, G., et al. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS applied materials & interfaces, 2016; 8(50): 34335–34341.
- 98. Zakharov, D., et al. Combined pyroelectric, piezoelectric and shape memory effects for thermal energy harvesting. in Journal of Physics: Conference Series. 2013. IOP Publishing.
- 99. Sukumaran, S. Design and preparation of a micro-harvesting device made of hybrid SMA/Piezoelectric polymer composite. 2021, Université de Lorraine.
- 100. Pereira, L.N., et al. Designing Multifunctional Multiferroic Composites for Advanced Electronic Applications. Electronics, 2024; 13(12): 2266.
- 101. Yu, X., Zhang, X. and Wang, J. Active vibration control of functionally graded carbon nanotube reinforced composite plate with coupled electromechanical actuation. Frontiers in Materials, 2022; 9: 861388.
- 102. He, X., et al. Active control of FGM plates with integrated piezoelectric sensors and actuators. International journal of Solids and Structures, 2001; 38(9): 1641–1655.
- 103. Patel, S. and Vaish, R. Design of PZT–Pt functionally graded piezoelectric material for low-frequency actuation applications. Journal of Intelligent Material Systems and Structures, 2015; 26(3): 321–327.
- 104. Takagi, K., et al. Fabrication and evaluation of PZT/Pt piezoelectric composites and functionally graded actuators. Journal of the European Ceramic Society, 2003; 23(10): 1577–1584.
- 105. Almajid, A., et al. Fabrication and modeling of porous FGM piezoelectric actuators. In Smart Structures and Materials 2002: Smart Structures and Integrated Systems. 2002. SPIE.
- 106. Sun, X., et al. Enhanced biocompatibility and osseointegration properties of magnetron sputtered BTO-SZTO bio-piezoelectrically coated films as zirconium alloy implants. Materials Chemistry and Physics, 2024; 311: 128545.
- 107. Careta, O., et al. ZnO nanosheet-coated TiZrPdSiNb alloy as a piezoelectric hybrid material for self-stimulating orthopedic implants. Biomedicines, 2021; 9(4): 352.
- 108. Pang, S., et al. Multifunctional ZnO/TiO2 nanoarray composite coating with antibacterial activity, cytocompatibility and piezoelectricity. Ceramics International, 2019; 45(10): 12663–12671.
- 109. Zhou, R., et al. Electrically bioactive coating on Ti with bi-layered SnO2–TiO2 hetero-structure for improving osteointegration. Journal of Materials Chemistry B, 2018; 6(23): 3989–3998.
- 110. Renteria, A., et al. Optimization of 3D printing parameters for BaTiO3 piezoelectric ceramics through design of experiments. Materials Research Express, 2019; 6(8): 085706.
- 111. Zheng, K., et al. 3D printed piezoelectric focused element for ultrasonic transducer. Ceramics International, 2024.
- 112. Park, J., Lee, D.G., Hur, S., Baik, J.M., Kim, H.S. and Song, H.C. A review on recent advances in piezoelectric ceramic 3D printing. Actuators, 2023; 12(4): 177.
- 113. Zou, H.-X., et al. A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting. Energy, 2021; 217: 119429.
- 114. Bao, B. and Wang, Q. A rain energy harvester using a self-release tank. Mechanical Systems and Signal Processing, 2021; 147: 107099.
- 115. Xie, X., Wang, Q. and Wu, N. A ring piezoelectric energy harvester excited by magnetic forces. International Journal of Engineering Science, 2014; 77: 71–78.
- 116. Li, M. and Jing, X. Novel tunable broadband piezoelectric harvesters for ultralow-frequency bridge vibration energy harvesting. Applied Energy, 2019; 255: 113829.
- 117. Liu, M., Xu, J. and Li, Q. Design and experiment of piezoelectric-shape memory alloy composite shock absorber. Materials Letters, 2021; 304: 130538.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d39dc5f1-a6e8-41bf-89b5-ca4095730746
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.