PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

When the heat is on: urbanization and land surface temperature in Guwahati, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study examines the efects of urbanization on land surface temperature (LST) in Guwahati, a city in India using satellite data. Landsat images were utilized for LST retrieval, land-use land-cover (LULC) classifcation and the normalized diference built-up index mapping. Surface Energy Balance Algorithms for Land and support vector machine methods were used in the study. Results showed that the city has gone through massive changes in its LULC pattern with a high degree of urbanization during the period 1992–2015. The built-up area (BUA) increased to 87.8 km2 in 2015 from 11.6 km2 in 1992 while vegetation decreased from 143.3 to 76.6 km2 . Open spaces and water bodies decreased from 14.5 to 5 km2 and to 6.6 km2 from 6.7 km2 , respectively. Conversely, an increasing trend of LST was observed. The mean LST which was 18.5 °C in 1992 rose to 29.03 °C in 2015. Linear regression used in quantifying the relationship between urbanization and LST showed a positive relationship between LST and BUAs in the city.
Słowa kluczowe
EN
urbanization   LST   LULC   NDBI   SEBAL   SVM  
PL
urbanizacja   LST   LULC   NDBI   SEBAL   SVM  
Czasopismo
Rocznik
Strony
891--901
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Department of Geography, Gauhati University, Guwahati 781014, India
autor
  • Department of Geography, Gauhati University, Guwahati 781014, India
  • Department of Geography, Gossaigaon College, Gossaigaon, India
  • Department of Geography, Gauhati University, Guwahati 781014, India
Bibliografia
  • 1. Allen RG, Tasumi M, Trezza R, Waters R, Bastiaanssen W (2002) SEBAL (Surface Energy Balance Algorithms for Land). Advanced training and user’s manual–idaho implementation, version 1, 97
  • 2. Ameen RFM, Mourshed M (2017) Urban environmental challenges in developing countries: a stakeholder perspective. Habitat Int 64:1–10
  • 3. Amiri R, Weng Q, Alimohammadi A, Alavipanah SK (2009) Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens Environ 113(12):2606–2617
  • 4. Andreasen MH, Agergaard J, Kiunsi RB, Namangaya AH (2017) Urban transformations, migration and residential mobility patterns in African secondary cities. Geografisk Tidsskrift-Danish J Geogr 117(2):93–104
  • 5. Anthony G, Greg H, Tshilidzi M (2007) Classification of images using support vector machines. arXiv preprint arXiv:0709.3967
  • 6. Ao A, Adepoju KA, Awotoye OO (2017) Mapping and assessing impervious surface areas and urban heat island in Osogbo, Nigeria. J Earth Sci Clim Change 8:424
  • 7. Barow I, Megenta M, Megento T (2019) Spatiotemporal analysis of urban expansion using GIS and remote sensing in Jigjiga town of Ethiopia. Appl Geomat 11:121–127
  • 8. Bastiaansen WJM et al (2000) SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J Hydrol 212–213:198–212
  • 9. Bhattacharyya KG, Kapil N (2010) Impact of urbanization on the quality of water in a natural reservoir: a case study with the Deepor Beel in Guwahati city, India. Water Environ J 24(2):83–96
  • 10. Boardman JW, Kruse FA (1994) Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada. In: Proceedings, ERIM tenth thematic conference on geologic remote sensing. Environmental Research Institute of Michigan, Ann Arbor, pp 407–418
  • 11. Borthakur M (2016) The heat is on: estimating the urban heat island effect in greater Guwahati area, Assam. PhD diss., Gauhati University, India (unpubl.)
  • 12. Borthakur M, Nath BK (2012) A study of changing urban landscape and heat island phenomenon in Guwahati metropolitan area. Int J Sci Res Publ 2(11):1–6
  • 13. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903
  • 14. Dewan AM, Yamaguchi Y (2009) Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Appl Geogr 29(3):390–401
  • 15. Ding X, Zhong W, Shearmur RG, ZhangX HD (2015) An inclusive model for assessing the sustainability of cities in developing countries—Trinity of Cities’ Sustainability from spatial, logical and time dimensions (TCS-SLTD). J Clean Prod 109:62–75
  • 16. Feizizadeh B, Blaschke T, Nazmfar H, Akbari E, Kohbanani HR (2013) Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. J Environ Plan Manag 56(9):1290–1315
  • 17. Gu Y, Li D (2017) A modeling study of the sensitivity of urban heat islands to precipitation at climate scales. Urban Clim 24:982–993
  • 18. Gumindoga W, Rientjes T, Shekede MD, Rwasoka DT, Nhapi I, Haile AT (2014) Hydrological impacts of urbanization of two catchments in Harare, Zimbabwe. Remote Sens 6:12544–12574
  • 19. Gurjar BR, Butler TM, Lawrence MG, Lelieveld J (2008) Evaluation of emissions and air quality in megacities. Atmos Environ 42(7):1593–1606
  • 20. Hu Y, Jia G (2010) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30(9):1382–1395
  • 21. Jiang Y, Fu P, Weng Q (2015) Assessing the impacts of urbanization-associated land use/cover change on land surface temperature and surface moisture: a case study in the Midwestern United States. Remote Sens 7(4):4880–4898
  • 22. Jusuf SK, Wong NH, Hagen E, Anggoro R, Hong Y (2007) The influence of land use on the urban heat island in Singapore. Habitat Int 31(2):232–242
  • 23. Kalma JD, McVicar TR, McCabe MF (2008) Estimating land surface evaporation: a review of methods using remotely sensed surface temperature data. Surv Geophys 29(4–5):421–469
  • 24. Kamdoum JN, Adepoju KA, Akinyede JO (2014) Assessment of impervious surface area and surface urban heat island: a case study. Int J Ecol Econ Stat 35(4):48–64
  • 25. Khandelwal S, Goyal R, Kaul N, Mathew A (2018) Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egypt J Remote Sens Space Sci 21(1):87–94
  • 26. Kharol SK, Kaskaoutis DG, Badarinath KVS, Sharma AR, Singh RP (2013) Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. J Arid Environ 88:90–101
  • 27. Kotharkar R, Ramesh A, Bagade A (2018) Urban heat island studies in south asia: a critical review. Urban Clim 24:1011–1026
  • 28. Lambin EF, Rounsevell MDA, Geist HJ (2000) Are agricultural land-use models able to predict changes in land-use intensity? Agr Ecosyst Environ 82(1–3):321–331
  • 29. Li D, Lu M (2018) Integrating geometric models, site images and GIS based on Google Earth and Keyhole Markup Language. Autom Construct 89(2018):317–331
  • 30. Li ZL, Tang BH, Wu H, Ren H, Yan G, Wan Z, Sobrino JA (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37
  • 31. Liang S, Shuey CJ, Russ AL, Fang H, Chen M, Hunt CL, Walthall R Jr (2003) Narrowband to broadband conversions of land surface albedo: II validation. Remote Sens Environ 84(1):25–41
  • 32. Lin B, Zhu J (2018) Changes in urban air quality during urbanization in China. J Clean Prod 188:312–321
  • 33. Maheshwari B, Pinto U, Akbar S, Fahey P (2020) Is urbanisation also the culprit of climate change? Evidence from Australian cities. Urban Clim 31:100581
  • 34. Malarvizhi Kumar SV, Porchelvan P (2016) Use of high resolution Google Earth satellite imagery in landuse map preparation for urban related applications. Proc Technol 24:1835–1842
  • 35. Markham BL, Barker JL (1986) Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Landsat Technical Notes No 1 Lanham
  • 36. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
  • 37. Mohanta K, Sharma LK (2017) Assessing the impacts of urbanization on the thermal environment of Ranchi City (India) using geospatial technology. Remote Sen Appl Soc Environ 8:54–63
  • 38. Morabito M, Crisci A, Messeri A, Orlandini S, Raschi A, Maracchi G, Munafò M (2016) The impact of built-up surfaces on land surface temperatures in Italian urban areas. Sci Total Environ 551–552:317–326
  • 39. Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review ISPRS. J Photogram Remote Sens 66(3):247–259
  • 40. Myint SW, Wentz EA, Brazel AJ, Quattrochi DA (2013) The impact of distinct anthropogenic and vegetation features on urban warming. Landsc Ecol 28(5):959–978
  • 41. Ogashawara I, Bastos VDSB (2012) A quantitative approach for analyzing the relationship between urban heat islands and land cover. Remote Sens 4(11):3596–3618
  • 42. Owen TW, Carlson TN, Gillies RR (1998) An assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. Int J Remote Sens 19(9):1663–1681
  • 43. Owojori A, Xie H (2005) Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In: 5th International symposium on remote sensing of urban areas, Tempe, AZ
  • 44. Pal S, Ziaul S (2017) Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt J Remote Sens Space Sci 20(1):125–145
  • 45. Pawe CK, Saikia A (2018) Unplanned urban growth: land use/land cover change in the Guwahati Metropolitan Area, India. Geografisk Tidsskrift-Danish J Geogr 118(1):88–100
  • 46. Pawe CK, Saikia A (2020) Decumbent development: urban sprawl in the Guwahati Metropolitan Area, India. Singap J Trop Geogr 41:2
  • 47. Rao GP, Jaswal AK, Kumar MS (2004) Effects of urbanization on meteorological parameters. Mausam 55(3):429–440
  • 48. Rogan J, Chen D (2004) Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress Plan 61(4):301–325
  • 49. Sanchez-Hernandez C, Boyd DS, Foody GM (2007) Mapping specific habitats from remotely sensed imagery: support vector machine and support vector data description based classification of coastal salt marsh habitats. Ecol Inf 2(2):83–88
  • 50. Sexton JO, Song XP, Huang C, Channan S, Baker ME, Townshend JR (2013) Urban growth of the Washington, DC–Baltimore, MD metropolitan region from 1984 to 2010 by annual, Landsat-based estimates of impervious cover. Remote Sens Environ 129:42–53
  • 51. Srivastava PK, Han D, Rico-Ramirez MA, Bray M, Islam T (2012) Selection of classification techniques for land use/land cover change investigation. Adv Space Res 50(9):1250–1265
  • 52. Straub A, Berger K, Breitner S, Cyrys J, Geruschkat U, Jacobeit J, Beck C (2019) Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany. Urban Clim 29:100491. https://doi.org/10.1016/j.uclim.2019.100491
  • 53. Sussman HS, Raghavendra A, Zhou L (2019) Impacts of increased urbanization on surface temperature, vegetation, and aerosols over Bengaluru, India. Remote Sens Appl Soc Environ 16:100261
  • 54. Szuster BW, Chen Q, Borger M (2011) A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones. Appl Geogr 31(2):525–532
  • 55. Tewari S, Kulhavy J, Rock BN, Hadas P (2003) Remote monitoring of forest response to changed soil moisture regime due to river regulation. J For Sci 49(9):429–438
  • 56. Tiwari S, Dumka UC, Gautam AS, Kaskaoutis DG, Srivastava AK, Bisht DS, Chakrabarty RK, Sumlin BJ, Solmon F (2017) Assessment of PM2.5 and PM10 over Guwahati in Brahmaputra River Valley: temporal evolution, source apportionment and meteorological dependence. Atmos Pollut Res 8(1):13–28
  • 57. Tiwari S, Thomas A, Rao P, Chate DM, Soni VK, Singh S, Hopke PK (2018) Pollution concentrations in Delhi India during winter 2015–16: a case study of an odd-even vehicle strategy. Atmos Pollut Res 9:1137–1145
  • 58. Tonkaz T, Çetin M (2007) Effects of urbanization and land-use type on monthly extreme temperatures in a developing semi-arid region, Turkey. J Arid Environ 68(1):143–158
  • 59. Tossonyi AT (2017) The context and challenges for Canada’s mid sized cities. The School of Public Policy Briefing Paper, 10, 9. https://www.policyschool.ca/wpcontent/uploads/…/Mid-Sized-Cities-Tassonyi.pdf. Accessed 12 May 2019
  • 60. Tran DX, Pla F, Latorre-Carmona P, Myint SW, Caetano M, Kieu HV (2017) Characterizing the relationship between land use land cover change and land surface temperature. ISPRS J Photogram Remote Sens 124:119–132
  • 61. Wang P, Huang C, Brown de Colstoun EC (2017) Mapping 2000–2010 impervious surface change in India using global land survey Landsat data. Remote Sens 9(4):366
  • 62. Wang S, Ma Q, Ding H, Liang H (2018) Detection of urban expansion and land surface temperature change using multi-temporal Landsat images. Resour Conserv Recycl 128:526–534
  • 63. Wu TF, Lin CJ, Weng RC (2004) Probability estimates for multi-class classification by pairwise coupling. J Mach Learn Res 5:975–1005
  • 64. Wukelic GE, Gibbons DE, Martucci LM, Foote HP (1989) Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sens Environ 28:339–347
  • 65. Xiong Y, Huang S, Chen F, Ye H, Wang C, Zhu C (2012) The impacts of rapid urbanization on the thermal environment: a remote sensing study of Guangzhou, South China. Remote Sens 4(7):2033–2056
  • 66. Yadav R, Barua A (2016) A study of urbanization and ecosystem services of Guwahati city from forest footprint perspective. J Ecosys Ecograph S5:004
  • 67. Yuan F, Bauer ME (2007) Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens Environ 106(3):375–386
  • 68. Zhu G, Blumberg DG (2002) Classification using ASTER data and SVM algorithms: the case study of Beer Sheva, Israel. Remote Sens Environ 80(2):233–240
  • 69. Zullo F, Fazio G, Romano B, Marucci A, Fiorini L (2018) Effects of urban growth spatial pattern (UGSP) on the land surface temperature (LST): a study in the Po Valley (Italy). Sci Total Environ 650(2):1740–1751
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d39bf627-f0b7-4064-bdd3-854ee1e94638
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.