Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The current study aims to valorize C. demersum, a common aquatic plant in lakes, ponds, and quiet streams with little use. FeCl3 -impregnated C. demersum was directly pyrolyzed to yield iron oxide-loaded biochar (IO/BC). Analytical results revealed that 3.19 wt% Fe existed in the resulting composite, including predominant hematite (a-Fe2 O3 ) and minor magnetite (Fe3 O4 ). Moreover, the total pore volume (Vtotal) and the specific surface area (SBET) of IO/BC were 0.091 cm3 /g and 113 m2 /g, respectively. IO/BC was subsequently explored for catalytic rhodamine B (RhB) degradation using H2 O2 . At pH 3.0, 30 °C, 1.00 g/L IO/BC partly eliminated 18% RhB (20 ppm), corresponding to an adsorption capacity of 3.6 mg/g. Upon the addition of 120 ppm H2 O2 , total RhB removal reached 92% after 90 min. Furthermore, RhB treatment was consistent with the pseudo-first-order kinetics. The rate constant (k) at 30 °C was 0.0260 min-1, and the activation energy (Ea ) was 72 kJ/mol. Overall, the findings highlighted the catalytic potential of IO/BC prepared from C. demersum for Fenton-like degradation of RhB.
Wydawca
Rocznik
Tom
Strony
297--305
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
autor
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
Bibliografia
- 1. Babuponnusami A. and Muthukumar K. 2014. A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2(1), 557–572.
- 2. Bedia J., Peñas-Garzón M., Gómez-Avilés A., Rodriguez J.J. and Belver C. 2020. Review on activated carbons by chemical activation with FeCl3 . C, 6(2), 21.
- 3. Chen J.-Q., Sharifzadeh Z., Bigdeli F., Gholizadeh S., Li Z., Hu M.-L. and Morsali A. 2023. MOF composites as high potential materials for hazardous organic contaminants removal in aqueous environments. Journal of Environmental Chemical Engineering, 11(2), 109469.
- 4. Do T.V.T., Bui Q.L.N., Nguyen H.M., Lam H.H., Tran-Thuy T.-M., Nguyen L.Q., Ngo D.T.H. and Nguyen D.V. 2022. One-pot fabrication of magnetic biochar by FeCl3 -activation of lotus seedpod and its catalytic activity towards degradation of Orange G. Materials Research Express, 9(10), 105601.
- 5. Feng Z., Yuan R., Wang F., Chen Z., Zhou B. and Chen H. 2021. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review. Science of The Total Environment, 765, 142673.
- 6. Filote C., Roșca M., Hlihor R.M., Cozma P., Simion I.M., Apostol M. and Gavrilescu M. 2021. Sustainable application of biosorption and bioaccumulation of persistent pollutants in wastewater treatment: Current practice. Processes, 9(10), 1696.
- 7. Gan P.P. and Li S.F.Y. 2013. Efficient removal of Rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chemical Engineering Journal, 229, 351–363.
- 8. Garrido-Ramírez E.G., Theng B.K.G. and Mora M.L. 2010. Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions — A review. Applied Clay Science, 47(3), 182–192.
- 9. Ghibate R., Kerrou M., Chrachmy M., Baaziz M.B., Taouil R. and Senhaji O. 2024. Utilizing agricultural waste for sustainable remediation of textile dyeing effluents. Ecological Engineering & Environmental Technology, 25(7), 369–378.
- 10. Gupta M., Savla N., Pandit C., Pandit S., Gupta P.K., Pant M., Khilari S., Kumar Y., Agarwal D., Nair R. R., Thomas D. and Thakur V.K. 2022. Use of biomass-derived biochar in wastewater treatment and power production: A promising solution for a sustainable environment. Science of The Total Environment, 825, 153892.
- 11. Gutiérrez L., de la Cueva L., Moros M., Mazarío E., de Bernardo S., de la Fuente J. M., Morales M. P. and Salas G. 2019. Aggregation effects on the magnetic properties of iron oxide colloids. Nanotechnology, 30(11), 112001.
- 12. Keskinkan O., Goksu M.Z.L., Basibuyuk M. and Forster C. F. 2004. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresource Technology, 92(2), 197–200.
- 13. Liu Y. and Wang J. 2023. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chemical Engineering Journal, 466, 143147.
- 14. Lu F. and Astruc D. 2020. Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 408, 213180.
- 15. Masud M.A.A., Shin W.S., Sarker A., Septian A., Das K., Deepo D.M., Iqbal M.A., Islam A.R.M.T. and Malafaia G. 2023. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Science of The Total Environment, 904, 166813.
- 16. Mokrzycki J., Michalak I. and Rutkowski P. 2021. Biochars obtained from freshwater biomass—green macroalga and hornwort as Cr(III) ions sorbents. Biomass Conversion and Biorefinery, 11(2), 301–313.
- 17. Mukhopadhyay A., Duttagupta S. and Mukherjee A. 2022. Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. Journal of Environmental Chemical Engineering, 10(3), 107560.
- 18. Nguyen H.M., Nguyen L.T., Nguyen L.T.K., Lam H.H., Tran-Thuy T.-M., Nguyen L.Q. and Nguyen D.V. 2021. Facile preparation of lotus seedpod-derived magnetic porous carbon for catalytic oxidation of Ponceau 4R. IOP Conference Series: Earth and Environmental Science, 947(1), 012019.
- 19. Nguyen H.M., Truong T.B., Nguyen H.-H.T., Tran P.T., Tran-Thuy T.-M., Nguyen L.Q. and Nguyen D.V. 2023. Catalytic ozonation of Ponceau 4R using multifunctional magnetic biochar prepared from rubber seed shell. Journal of Ecological Engineering, 24(12), 143–151.
- 20. Nguyen N.T.K., Le D.T.T., Vo K.D., Huynh L.T., Nguyen H.M., Tran-Thuy T.-M., Nguyen L.Q. and Nguyen D.V. 2024. Valorization of tropical almond (Terminalia catappa) leaves into iron-containing activated carbon for rapid catalytic degradation of methylene blue with hydrogen peroxide. Journal of Ecological Engineering, 25(8), 54-61.
- 21. Novia N., Agustina T.E., Riduan S. and Pangestu G. 2023. Testing of a laboratory wastewater treatment prototype using coagulation, adsorption and photo-Fenton processes. Ecological Engineering & Environmental Technology, 24(5), 202–209.
- 22. Pereira Lopes R. and Astruc D. 2021. Biochar as a support for nanocatalysts and other reagents: Recent advances and applications. Coordination Chemistry Reviews, 426, 213585.
- 23. Polechońska L., Klink A., Dambiec M. and Rudecki A. 2018. Evaluation of Ceratophyllum demersum as the accumulative bioindicator for trace metals. Ecological Indicators, 93, 274–281.
- 24. Qadri H., Uqab B., Javeed O., Dar G.H. and Bhat R.A. 2022. Ceratophyllum demersum-An accretion biotool for heavy metal remediation. Science of The Total Environment, 806, 150548.
- 25. Qin F., Zhang C., Zeng G., Huang D., Tan X. and Duan A. 2022. Lignocellulosic biomass carbonization for biochar production and characterization of biochar reactivity. Renewable and Sustainable Energy Reviews, 157, 112056.
- 26. Qu J., Shi J., Wang Y., Tong H., Zhu Y., Xu L., Wang Y., Zhang B., Tao Y., Dai X., Zhang H. and Zhang Y. 2022. Applications of functionalized magnetic biochar in environmental remediation: A review. Journal of Hazardous Materials, 434, 128841.
- 27. Rahim Pouran S., Abdul Raman A.A. and Wan Daud W.M.A. 2014. Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. Journal of Cleaner Production, 64, 24–35.
- 28. Rusevova K., Kopinke F.-D. and Georgi A. 2012. Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance. Journal of Hazardous Materials, 241–242, 433–440.
- 29. Sheng Y., Sun Y., Xu J., Zhang J. and Han Y.-F. 2018. Fenton-like degradation of rhodamine B over highly durable Cu-embedded alumina: Kinetics and mechanism. AIChE Journal, 64(2), 538–549.
- 30. Shokri A. and Fard M.S. 2022. A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment. Environmental Challenges, 7, 100534.
- 31. Thomas N., Dionysiou D.D. and Pillai S.C. 2021. Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 404, 124082.
- 32. Titchou F.E., Zazou H., Afanga H., El Gaayda J., Ait Akbour R., Nidheesh P.V. and Hamdani M. 2021. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chemical Engineering and Processing - Process Intensification, 169, 108631.
- 33. Wang D., Gan X., Wang Z., Jiang S., Zheng X., Zhao M., Zhang Y., Fan C., Wu S. and Du L. 2023. Research status on remediation of eutrophic water by submerged macrophytes: A review. Process Safety and Environmental Protection, 169, 671–684.
- 34. Wang N., Zheng T., Zhang G. and Wang P. 2016. A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4(1), 762–787.
- 35. Weidner E., Karbassiyazdi E., Altaee A., Jesionowski T. and Ciesielczyk F. 2022. Hybrid metal oxide/biochar materials for wastewater treatment technology: A review. ACS Omega, 7(31), 27062–27078.
- 36. Yi Y., Huang Z., Lu B., Xian J., Tsang E. P., Cheng W., Fang J. and Fang Z. 2020. Magnetic biochar for environmental remediation: A review. Bioresource Technology, 298, 122468.
- 37. Zeng S. and Kan E. 2022. FeCl3 -activated biochar catalyst for heterogeneous Fenton oxidation of antibiotic sulfamethoxazole in water. Chemosphere, 306, 135554.
- 38. Zhang M.-h., Dong H., Zhao L., Wang D.-x. and Meng D. 2019. A review on Fenton process for organic wastewater treatment based on optimization perspective. Science of The Total Environment, 670, 110–121.
- 39. Zhao C., Wang B., Theng B.K.G., Wu P., Liu F., Wang S., Lee X., Chen M., Li L. and Zhang X. 2021. Formation and mechanisms of nano-metal oxide-biochar composites for pollutants removal: A review. Science of The Total Environment, 767, 145305.
- 40. Zhu Y., Zhu R., Xi Y., Zhu J., Zhu G. and He H. 2019. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Applied Catalysis B: Environmental, 255, 117739.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d39aadda-b52a-4213-bdd6-5488894aa2e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.