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A novel Wiener process model with measurement errors 
for degradation analysis

Analiza degradacji z zastosowaniem nowego modelu 
procesu Wienera uwzględniającego błędy pomiarowe

Degradation analysis can be used to assess reliability for complex systems and highly reliable products, because few or even 
no failures are expected in a reasonable life test span. In order to further our study on degradation analysis, an independent 
increment random process method with linear mean and standard deviation functions is presented to model practical degrada-
tion procedures. It is essentially a Wiener process method. Since measurement errors are often created by imperfect instruments, 
procedures and environments during degradation investigation, the measurement error is incorporated into the independent in-
crement random process. Furthermore, statistical inferences of this model are discussed, and close forms of a product’s median 
life and percentile of the failure time distribution (FTD) are also derived. The proposed method is illustrated and verified in a 
comprehensive simulation study and two practice applications for storage disks and Infrared light-emitting diodes. Meanwhile, 
the time-transformed Wiener process model with measurement error is considered as a reference method. Comparisons show that 
the proposed model can provide reasonable results, even in considerably small sample size circumstance.

Keywords:	 performance degradation, independent increment process, Wiener process model, linear mean func-
tion, linear standard deviation function, measurement error.

Analizę degradacji można stosować do oceny niezawodności wysoce niezawodnych złożonych systemów i produktów, ponieważ 
w ich przypadku istnieje bardzo niskie lub zerowe prawdopodobieństwo wystąpienia uszkodzenia w trakcie badania trwałości 
w przyjętym okresie eksploatacji. W artykule przedstawiono nowo opracowane podejście do modelowania procesu degradacji 
wykorzystujące metodę procesu o przyrostach niezależnych oraz pojęcia funkcji średniej liniowej i funkcji liniowego odchylenia 
standardowego. Zasadniczo jest to metoda oparta na procesie Wienera. Ponieważ badania degradacji często wiążą się z błędami 
pomiarowymi wynikającymi z niedoskonałości stosowanych narzędzi, procedur i warunków badawczych, opisywany proces o 
przyrostach niezależnych uwzględnia błędy pomiaru. Ponadto, w pracy omówiono wnioski statystyczne, jakie można wyciągnąć 
na podstawie przedstawionego modelu oraz wyprowadzono wzory ogólne na średnią długość życia produktu oraz na percentyl 
rozkładu czasu do uszkodzenia. Proponowaną metodę zilustrowano i zweryfikowano na podstawie kompleksowego badania sy-
mulacyjnego oraz przykładów praktycznego zastosowania modelu w odniesieniu do dysków pamięci masowej oraz diod podczer-
wieni. W artykule przedstawiono także model procesu Wienera z transformowanym czasem uwzględniający błąd pomiaru, który 
posłużył za model referencyjny. Porównania pokazują, że proponowany model może dawać poprawne wyniki, nawet przy bardzo 
małej liczebności próby.

Słowa kluczowe:	 obniżenie charakterystyk, proces o przyrostach niezależnych, model procesu Wienera, funkcja 
średniej liniowej, funkcja liniowego odchylenia standardowego, błąd pomiaru.

1. Introduction

High reliable components and systems have been becoming more 
and more common in engineering as well as in our everyday life. Con-
ventional failure data based methods encounter serious challenges be-
cause one cannot get enough failure data through general or acceler-
ated life tests. Since most components and systems degrade over time, 
and can be considered to be failed when the deterioration accumulates 
beyond a predefined level (also called threshold level), degradation 
data can be taken as rich source life information in reliability assess-
ment [9]. Once the failure has been detected, it is possible to access 
the FTD, infer reliability and accordingly predict the remaining useful 

life to take timely maintenance actions to avoid the catastrophic fail-
ures [12]. There has been a growing literature that is concerned with 
drawing reliability inferences from degradation data [8].

Lu and Meeker [6] concluded in their study that observed degra-
dation on a specimen over time is a time series that can exhibit auto-
correlation. Although they ignored the autocorrelation in their study, 
more and more deterioration models have taken this issue into con-
sideration in the model construction procedure. Among these models, 
the Wiener process with positive drift is a favourable candidate due 
to its mathematical properties and physical interpretations [20]. The 
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regular Wiener process η( ),t t ≥{ }0  
with drift β  and diffusion σ  can 

be expressed as the well-adopted form [16, 18]:

	 η β σ( ) ( ) ( )t t t= + ( )Λ ΛB 	 (1)

where B( )⋅  denotes a standard Wiener process, and ( )tΛ  is defined as 

a transformed time scale. From the basic definition of Wiener process, 

we know that η( ),t t ≥{ }0  
has s-independent and normally distributed 

increments; viz. ∆ = + ∆ −η η η( ) ( ) ( )t t t t  is s-independent of η( )t , 

and η β σ( ) ~ ( ), ( )t N t tΛ Λ2( ) .

There has been considerable interest on the part of the scientists 
and engineers in applying this process in degradation reliability analy-
sis. Whitmore and Schenkelberg [18] presented a Wiener diffusion 
process with power-law time scale transformation to model self-reg-
ulating heating cables. Tseng and Peng [14] adopted an exponential 
transformed time scale to describe the deterioration path of a specific 
light emitting diode (LED) product. Park and Padgett [10] developed 
a generalized cumulative damage approach by describing initial dam-
age with this process. 

In practical engineering, it is inevitable that possible heterogenei-
ties within a product population may exist due to geometry, material 
and other variations throughout the population. Specimens from the 
same population may share some commonalities and exhibit certain 
unit-specific properties as well. Therefore, Wiener process model 
with mixed effects is developed, where fixed effects capture the com-
mon characteristics while random effects describe the unit-to-unit dif-
ferences. In real applications, drift β  for individual unit is usually 
assumed to be fixed but unknown, and follows a normal distribution 
β µ κ~ ,N 2( ). This model was utilized by Crowder and Lawless [3] 

to analyze a wear procedure.
It should be noted from the Wiener process definition that the de-

terioration processes depicted by regular Wiener process and mixed 
effects models exhibit specific statistical properties. Certain relation-
ship, also can be called limitation, exists between mean and variance 
because of the transformed time scale ( )tΛ . Taking the linear trans-
formed time scale situation (i.e., ( )tΛ  is a linear function of test time) 
as an example, we should note that the regular Wiener process will 

illustrate both linear trend βΛ( )t  and variance σ 2Λ( )t . Although for 

the commonly used mixed effects model situation β ~ N µ κ, 2( ) , the 
Wiener process will exhibit a linear mean µΛ( )t  and a quadratic vari-

ance κ σ2 2 2Λ Λ( ) ( )t t+ , one should note that this quadratic variance 
is not a generalized one because of the only one transformed time 
scale Λ( )t . 

To settle this problem, Tseng et al.[13] proposed a generalized 
Wiener process model for degradation analysis with two transformed 

time scales (1) ( )tΛ  and (2) ( )tΛ .

	 ( )(1) (2)( ) ( ) ( )t t tη β σ= Λ + ΛB  	 (2)

It can be concluded that Equation (2) is an improved degrada-
tion model comparing with Equation (1), because the previously men-
tioned correlation limitation between mean and variance of the regular 
Wiener process and mixed effects model can be broken through. It is 
worth noticing, however, that Tseng et al.[13] restricted their attention 

to the case (1) (2)( ) ( )t tΛ = Λ  in their study, because they concluded 
that it was rather difficult to obtain an explicit form of the lifetime 

distribution when (1) (2)( ) ( )t tΛ ≠ Λ . Therefore, they only proposed a 
general Wiener process model form with two transformed time scales 
without any essential studies or applications. From this viewpoint, the 
first objective of this paper is to study a commonly encountered case 
of the generalized Wiener process model expressed by Equation (2) 
via theoretical, simulation and empirical means. 

In our previous work [17], we constructed a Wiener process model:

	 η( )t a bt dt= + + ( )B 2 	 (3)

It can be concluded as a special case of the generalized two-trans-
formed time scale Wiener model expressed by Equation (2), where 

drift β  and diffusion σ  are both constants, (1) ( )t a btΛ = +  and 
(2) 2( )t dtΛ = . Measurement errors were not considered in the mod-

eling procedure, i.e., deterioration observations were supposed to only 
reflect the inherent randomness of degradation itself. 

To further depict the commonly encountered degradation situa-
tion of linear trend and generalized quadratic variance, we propose an 
improved model:

	 η( )t a bt d d t= + + +( )( )B 1 2
2 	 (4)

where a, b , 1d  and 2d  are model parameters relating to linear mean 
and quadratic variance features, common for all units. Therefore, in-

crement ∆ = + ∆ −η η η( ) ( ) ( )t t t t  is also s-independent of η( )t . 
Comparing with the previously discussed regular Wiener proc-

ess and mixed effects models, Equation (4) can be considered as a 
more generalized Wiener process model for the commonly encoun-
tered linear degradation path situation, because it can break through 
the correlation limit due to the only one transformed time scale ( )tΛ  . 
More important, degradation model of Equation (4) also can give a 
closed-form of FTD, and standard errors and confidence intervals 
for the parameter estimators can be directly understood and derived. 
Meanwhile, comparing with the generalized Wiener model form of 
Equation (2), Equation (4) is a special case by letting the two trans-

formed time scales (1) ( )t a btΛ = +  and (2) ( )tΛ =  ( )21 2d d t+  , and 
the constant drift rate β  and diffusion coefficient σ  are incorporate 
into the transformed time scales.

On the other hand, it is inevitable that measurement errors may 
be introduced during the observation process in practical engineer-
ing. Therefore, Whitmore [18] described a Wiener diffusion model 
for measured degradation data that took both the inherent randomness 
of degradation itself and the measurement errors into account. He de-
rived the sample log-likelihood function with the first differences of 
the inspections, the correlation among the observations on an item 
over time is consequently considered in his modeling procedure. Mo-
tivated by laser data [7], Peng and Tseng [11] proposed a generalized 
formulation of the linear degradation path in which the unit-to-unit 
variation, the time-dependent error structure and the measurement er-
ror were considered simultaneously. To utilize the first inspection of 
each unit, Ye et al. [20] improved the model in [18] and developed 
a time-transformed Wiener process model with measurement errors 
to analyze degradation of magnetic heads of hard disk drives. This 
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improvement makes efficient remedy in real application, especially 
when the number of observations associated with each unit is small. 

Thus, motivated by the practical need of including measurement 
errors in degradation analysis, the second objective of this study is to 
develop a generalized Wiener process model subject to measurement 
errors. Throughout this paper, the deterioration measurement at time 
t  is denoted by ( )Y t  , and the corresponding true level of degrada-
tion at this time is denoted by η( )t . Then the statistical model relating 
degradation measurement ( )Y t  to the true deterioration level η( )t  is 
assumed to be the following:

	 Y t t e t( ) ( ) ( )= +η 	 (5)

where ( )e t  denotes the measurement errors that are assumed to be 
i.i.d. realization of ( ) ~e t N e0 2,σ( ) .

We call this proposed Wiener process model with measurement 
errors expressed by Equation (4) the simple model. And we will il-
lustrate it in Section 2. In this study, consequently, we improve the 
Wiener process model of Equation (4) via taking measurement errors 
into consideration, and further investigate a more generalized model. 

The remainder of the paper is organized as follows. Section 2 
introduces the simple Wiener process degradation model with linear 
trend and quadratic variance. Section 3 takes measurement errors into 
the simple model and gives the model description, MLE for unknown 
parameter and initial guesses for optimization algorithm. In Section 4, 
the efficiency and reasonability of our methodology is validated com-
paring with the Wiener processes with measurement errors in [20] via 
a Monte Carlo simulation study. In Section 5, the proposed approach 
is illustrated by two applications including storage disks degradation 
analysis and Infrared light-emitting diodes (IRLEDs) degradation 
analysis, and comparative results are given. A summary and conclu-
sion is given in Section 6.

2. The simple Wiener processes degradation model

Experimental results provide an observed sequence of degrada-
tion readings z  over test time t  for each sample unit. The observed 
degradation z  is a unit’s actual degradation. “Time” t  could be real 
test time or some other measure like cycles in fatigue tests. We make 
the following general assumptions about the manner in which the test 
is conducted.

Sample units are randomly selected from a population or pro-1)	
duction process. We use this assumption for ensuring the inde-
pendence of measurements for individual item, and ensuring 
the population reliability inference reasonability based on the 
tested sample.
The degradation is a non-return process (eg, when in discus-2)	
sion with unmaintainable systems with stable intensity of use); 
viz. a unit can be declared as having failed when its degrada-
tion reaches a critical threshold [4].
The first test time is prespecified, the same across all the test 3)	
units, but not necessarily to be zero. This can be realized via 
proper transforming when the first test times are not all the 
same in practical degradation test. Then test times can be dif-
ferent for individual item, and may or may not be equally 
spaced in time.

Based on our previous study and analysis, the mean and stand-
ard deviation of some degradation process can both be considered as 
linear function of test time, or transformed test time when this rela-
tionship cannot be found directly. Consequently, in order to construct 
a generalized method, we define the following two transformation 
functions. One is an appropriate monotone increasing time transfor-

mation 1( )x f t= , where t  denotes the test time, and x  corresponds 
to the transformed test time. The other one is performance parameter 

transformation 2( )y f z= , where z  denotes the measurement in the 
degradation test, and y  is the transformed degradation value. These 
two transformation functions can be obtained by engineering experi-
ence, mechanistic knowledge (see the wearing theory in [15]) or data 
plotting (see the complex logarithmic transformation in [21]). Particu-
larly, let x t=  and y z=  when linear mean relationship between deg-
radation measurement z  and test time t  can be established directly.

Then the Wiener process proposed in this paper with linear mean 

µ( )x a bx= +  and linear standard deviation σ ( )x d d x= +1 2  can be 

defined through the following assumptions.
Suppose 1)	 m  items are put into test. The performance of 

unit i  is measured (or inspected) at in  prespecified times 
1 2 ii i nt t t< < <  with corresponding measurements 1,iz  , 

2, ,
ii i nz z , 1,2, ,i m= 

.

If necessary, construct the time transformation 2)	 1( )x f t=  and/

or performance parameter transformation 2( )y f z= . Then the 

transformed performance increments 2 1i iy y− , 3 2i iy y− , …, 

( 1)in i ny y −−
 
are inter-independent for all items 1,2, ,i m= 

.

The increment 3)	 ( 1)ij i jy y −−  follows a normal distribution:

y y N b x x d d x x d x xij i j ij i j ij i j ij i− − − + −− − −( ) ( ) ( )~ ( ), ( ) (1 1 1 2 1 2
2 22 (( ) )

, , , , , ,
j

i m j n
−( )

= =

1
2

1 2 2 3 

 (6)

where b x x= ∂ ∂µ( )  is the constant mean degradation rate; 

and d x x2 = ∂ ∂σ ( )  depicts the increasing rate of standard de-
viation, also a constant.

The first transformed measurement 4)	 1iy  is independent of the 

increments 2 1i iy y− , 3 2i iy y− , ( 1), in i ny y −−
 and follows a 

normal distribution:

	 y N i mi1 1 1
2 1 2~ ( , ) , , ,µ σ  = 

	 (7)

where µ1  and σ1
2  are the mean and variance of the trans-

formed degradation measurements at the first transformed test 

time 1x .

Based on the properties of Wiener processes and the model as-
sumptions mentioned above, ijy  also follows a normal distribution:

	

y a bx x

x N d d x

x x

ij ij ij

ij ij

ij ik

= + +

+( )
( )

ε

ε

ε ε

( )

( ) ~ ,( )

( ), ( )

0 1 2
2

Cov == +( ) ≤d d x x xij ij ik1 2
2

	 (8)

where a , b , 1d  and 2d  are unknown parameters, common for all 

items. We can further concluded that variance of ijy  can be depicted 
by Var( ) ( ) ( )y x d d xij ij ij= = +σ 2

1 2
2 .

From the Wiener process definition, its standard deviation can be 
concluded to be an increasing function of time, which yields that 
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1 0d ≥  and 2 0d > . Particularly, when 1 0d = , standard deviation will 

be σ ( )x d x= 2 , then the degradation model will become the one we 
have established in [17]. Based on the statistical models expressed by 
Equation (2) and Equation (8), our proposed methodology is essen-

tially the Wiener process model ty =  a bx B d d x+ + +( )( )1 2
2  from a 

different viewpoint, where the statistical properties can be intuitively 
drawn.

3. The improved model with measurement errors

3.1. Model Assumption

Let x t= , y z= , and suppose η( )t  is a unit’s actual degradation. 
Then, based on the statistical models expressed by Equation (4) and 
Equation (5), the statistical model relating degradation measurement 

( )Y t  to the true deterioration level η( )t  is assumed to be the follow-
ing:

	 Y t a bt B d d t e t( ) ( ) ( )= + + +( ) +1 2
2 	 (9)

where ( )e t  denotes the measurement errors that are assumed to be 

i.i.d. realization of e t N e( ) ~ ,0 2σ( ) . The ( )e t  is assumed to be mutu-

ally independent of each other and of the η( )t .
Suppose the deterioration is inspected at ordered times 

{ }1 2, , , nt t tt =  , with observed degradations 

{ }1 1 2 2, , , n nY y Y y Y y= = =
, where Y ei i i= +η . Define the increment 

1 1,Y Y=
 
y y a bt1 1 1 1= = +,λ  and 1i i iY Y Y −= −

, 1i i iy y y −= −
,

λi i ib t t= −( )−1  
for 2,3, ,i n= 

. Then { }1, , nY Y=Y     follows a 

multivariate normal distribution N bλλ,,∑( )  with a joint probability 
density function (PDF):

	 f
n



  Y y y y( ) = ( ) ∑ − ( ) ∑ ( )





− − −2 1
2

2
1
2 1π exp '- -λλ λλ     (10)

where ( )'1 2, , , ny y y=y      is a realization of Y , 

λλ = ( )λ λ λ1 2, , , '
 n , and the variance matrix ∑  is a positive definite 

matrix with the ( ),i j th element given by:

( )

2 2
1 2

2 2
2 1 2

, 2

( ) 1

2 ( ) 2 1cov , |
1 1

0

i e

i i e
i j i j

e

d d t i j

d t d d t i jY Y b
i j or i j

otherwise

σ

σ

σ

 + + = =
 
 ∆ + + = >∑ = =  
 − = + = −
 
 

        (11)

where 1i i it t t −= −  and ( )1 2i i it t t −= + , 2,3, ,i n= 
.

3.2.	 Failure Time Distribution

The distribution function of the degradation characteristic y  at 
time t  can be given by:

	 F y t
y a bt

tY ( | )
( )

=
− −







Φ

σ0
	 (12)

where σ σ0 1 2
2 2( )t d d t e= +( ) + , and ( )Φ ⋅  is the distribution func-

tion of the standard normal distribution.
The failure state of the product can be defined by the event fy D>  

or fy D< , where fD  is a particular “critical” level for product per-
formance. According to this definition, product reliability is the prob-
ability of the product being in normal state in the time interval [ ]0,t . 
Consequently, FDT can be defined as:

	 F t D P T t D
D t

tT | |
( )

( )f f
f( ) = ≤{ } = −
−







1

0
Φ

µ
σ

	 (13)

if 0b > , or as:

	 F t D P T t D
D t

tT | |
( )

( )f f
f( ) = ≤{ } = −







Φ

µ
σ0

	 (14)

when 0b < .

As important characteristics, the FTD percentiles are elemental in 

reliability and safety analysis. Let pt
 
be the 100 p th percentile of the 

FTD, i.e. an average of 100(1 )%p− of the population of the product 

will not fail before pt . Then solving:

	 ( )f|TF t D p= 	 (15)

with respect to t  yields the percentile pt . Taking 0.50p =  for exam-
ple, the median life associated with the FTD in practical applications, 
can be derived.

3.3.	 Parameter Estimation

Let Θ  be the vector of all unknown parameters; viz. 
Θ = ( )a b d d e, , , ,1 2

2σ . Suppose that the degradation processes of m  

units have common inspection times given by t . The degradation 

measurements for unit k  are given by { }1 2, , ,k k k kny y y=y  . Again, 
we work on the increments ky . Based on Equation (10) and Equa-

tion (11), the log likelihood function can be written as:

	 l Y C m
k k

k

m
| ln 'Θ( ) = − ∑ − ( ) ∑ ( )−

=
∑2

1
2

1

1
 y y- -λλ λλ 	 (16)

where C  denotes a generic constant that may change from line to line 
throughout this paper.

Subsequently, the maximum likelihood estimation (MLE) of 
Θ = ( )a b d d e, , , ,1 2

2σ  can be obtained by maximizing the log likeli-

hood function. However, it is very tough for direct constrained opti-
mization of the log-likelihood function Equation (16). The genetic 
algorithm (GA) provides a possible way for resolving this problem. 
GA can be understood as an “intelligent” probabilistic search algo-
rithm which can be applied to a variety of combinatorial optimization 
problems. GA is composed of evaluation-step, selection-step and re-
production- step. This evaluation-selection-reproduction cycle is re-
peated until a satisfactory solution is found. GA is considerably sim-
ple and converges reliably. A more comprehensive overview of GAs 
can be found in [1, 5].
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3.4.	 Initial Guesses

When GA is applied to numerically maximize the log likelihood 
function, we start with an initial guess that is reasonably close to the 
MLE of the unknown parameters Θ = ( )a b d d e, , , ,1 2

2σ  . This start is 

especially important if the data size is large (i.e., a large prespecified 
inspection times

 
n  for each unit), because under this scenario the 

likelihood function becomes much more complex with possibly many 
local optima, and each step takes a long time to evaluate. A bad start-
ing point would result in a very slow convergence, as well as a local 
optimum far away from the true MLE. This subsection develops a 
two-step procedure to make an educated guess for the initial intervals 
of the unknown parameters. The basic idea is as follows. For m  deg-
radation units, the rough estimates for a  and b  can be obtained by 
fitting the degradation data based on the standard least squares ap-
proach. Then, by treating the rough estimators as the true values, the 

problem reduces to the estimation of the unknown parameters 1 2,d d  

and σe
2 . The detailed procedure is as follows:

Step 1. Get rough estimates of a  and b  by minimizing the mean 

squared error (MSE) MSE = − −( )
=
∑ y a bti i
i

n 2

1
, where 

1

1 m
iji

j
y y

m =
= ∑ .

Step 2. By fixing a  and b  at the rough estimates obtained from 

step 1, get rough estimates of 1 2,d d  and σe
2  by maximizing the log 

likelihood function l d d e1 2
2, ,σ( ) .

After obtaining the rough estimates from the above two-step pro-
cedure, legitimate initial guesses of 1 2,d d  and σe

2  are obtained. In 

conjunction with the initial guesses of a  and b  from Step 1, the start-
ing intervals of the unknown parameters for maximizing the log likeli-
hood function Equation (16) based on GA are determined.

4. Simulation Experiments

To demonstrate the reasonability of the proposed independent in-
crement process degradation approach, a comprehensive Monte Carlo 
simulation study is conducted. For clear, let M0 denote the proposed 
model. The Wiener process with measurement errors in [20] is consid-
ered as a reference method M1 for compari-
son. To settle the linear degradation path 
problem, we assume the transformed time 
scale to be ( )t a btΛ = + , and let 
β µ κ~ ,N 2( )  be a normally distributed 

random effect. As discussed in Section 1, the 
degradation process then follows a normal 
distribution with a linear mean and quadratic 

variance Y t N t( ) ~ ( ),µΛ(  
κ σ σ2 2 2 2Λ Λ( ) ( )t t e+ + ). Without loss of 

generality in simulation, degradation data 
are first simulated based on the proposed 
model, and then the model presented in [20] 
and our model are adopted to fit the simulat-
ed degradation. Based on simulation studies, 
we found that if the degradation model of 
Equation (10) is utilized to generate the deg-

radation data, not all simulated deterioration processes can be prop-
erly depicted by [20] because the limitation between mean and vari-
ance functions. To illustrate this important issue, we give two examples 
here.

4.1.	 Example 1

Without loss of generality, we simulate the degradation data of m  

products with parameters a =3.5, b =1.8, 1d =0.5, 2d =0.18 and σe
2

=1. Each product is measured n  times with the measured frequency 

of t =1. Given that the degradation threshold is fD =24. The value 

of ( ),n m  is chosen to be (10, 5), (10, 10), (10, 20) and (15, 5) sequen-

tially. For each combination of ( ),n m , MSE and the mean relative 

error (MRE) for model parameters a b d d e, , , ,1 2
2σ( )  of the proposed 

model are estimated based on 5000 Monte Carlo replications. Further-
more, the MSEs and the MREs of the median life 0.5t  and the 5th 

percentile of FTD 0.05t  are obtained to compare the estimated accura-
cy of the proposed model with the reference model. The results ob-
tained are listed in Table 1 and Table 2 respectively.

Table 1 shows that the MSE and MRE of parameters based on the 
proposed model are considerably small, and when the number of test 
unit m  increases, the MSE and MRE of parameters become smaller. 
When the number of measured time points n  increases, the MSE and 
MRE of parameters also become smaller but not significantly. One 

should further note that the MRE of 1d , 2d  
and σe

2  are relatively big, 
this is because their true values are considerably small, then any small 
estimation bias will lead to a rather large relative error.

From Table 1 and Table 2, it can be observed that the MSE and 
MRE of the median life and the 5th percentile of FTD based on our 
model are significantly smaller than the estimated results obtained 
by the reference model. In addition, the MRE of the median life are 
less than 0.05 when the sample size is greater than 10 for both meth-
ods. However, for the proposed model, MRE is less than 0.05 even 
for a sample size of 5. For all situations, MRE of the 5th percentile 
of FTD based on our model are only nearly half of that based on the 
reference model. Therefore, for the purpose of obtaining more ac-
curate results, proper degradation models should be considered. In 
other words, if the degradation model is mis-specified, it may lead 
to unreliable results.

Table 1.	 MSE and MRE of the estimates from M0

( ),n m
(10,5) (10,10) (10,20) (15,5)

MSE MRE MSE MRE MSE MRE MSE MRE

a 0.26380 0.11849 0.12397 0.08077 0.06180 0.05696 0.23061 0.10861

b 0.01487 0.05400 0.00726 0.03827 0.00375 0.02691 0.01058 0.04576

1d 0.11069 0.58424 0.06927 0.43850 0.04552 0.34930 0.10608 0.56923

2d 0.00694 0.37162 0.00318 0.24760 0.00166 0.17936 0.00309 0.24288

2
eσ 0.11534 0.27040 0.05950 0.19331 0.02812 0.13462 0.08533 0.23154

0.5t 0.45964 0.04661 0.21803 0.03254 0.11324 0.02354 0.33809 0.04058

0.05t 0.49521 0.05963 0.20037 0.03826 0.10238 0.02765 0.29164 0.04591
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To further compare the difference, we calculate the log-likelihood 
function (Log-LF) for each simulated data set. Then the average Log-
LF and the corresponding Akaike information criterion (AIC) value 
are obtained, and the results are displayed in Table 3.

For each combination of ( ),n m  shown in Table 
3, it is clear that the proposed model always outper-
forms the reference model both in terms of the Log-
LF and AIC. Therefore, in some cases, it is necessary 
to use the proposed model to capture the degradation 
over time for obtaining more accurate results.

4.2.	 Example 2

To test the effect of measurement error, 
let σe

2  =2 and keep other parameters un-
changed, we simulate the degradation data. 

For each combination of ( ),n m , the MSE 
and the MRE for parameters a b d d e, , , ,1 2

2σ( )  

of the proposed model are again estimated 
based on 5000 Monte Carlo replications. Furthermore, the MSE and 

the MRE of the median life 0.5t  and the 5th percentile of FTD 0.05t  
are obtained to compare the estimated accuracy of the two models. 
The results are displayed in Table 4 and Table 5.

From Table 4 and Table 5, it can be concluded that MSE and MRE 
of parameters are small. MSE and MRE of median life and the 5th 
percentile of FTD based on our model are smaller than the reference 
model. Moreover, the MSE and MRE is a little larger than that in Sec-
tion 4.1 because the measurement error increases, but this change is 
not very significant. It shows that our model and the reference model 
still can provide precise estimates even when the measurement er-
ror becomes larger. However, the estimated results are more accuracy 
based on our model.

5. Illustrative Example

5.1.	 Storage disks degradation 
modeling

The block error rates of magneto-
optic data storage disks increases over 
time, and this increase leads to a soft 
failure when the block error rate 
reaches a critical value. Many tests 
have been carried out to collect degra-
dation data to investigate the degrada-
tion behavior of magneto-optic data 
storage disks. A dataset was presented 
in [7], where 16 units were tested for 
2000 hours at 80 oC and 85% relative 
humidity. The failure threshold level 
of block error rate is fD =5. The deg-

radation paths are depicted in Fig. 1.
We firstly begin with a preliminary 

statistical analysis by calculating the 
mean µ( )t  and standard deviation σ ( )t  at each measured time point, and the re-
sults are shown in Fig. 2. From Fig. 2, 
we can observe that the mean degrada-
tion path and the standard deviation are 

Table 2.	  MSE and MRE of the median life and the 5th percentile of FTD from M1

( ),n m
(10,5) (10,10) (10,20) (15,5)

MSE MRE MSE MRE MSE MRE MSE MRE

0.5t 1.28479 0.07428 0.55868 0.04963 0.29128 0.03565 1.23724 0.07304 

0.05t 1.35546 0.09738 0.65970 0.06972 0.38257 0.05354 1.01684 0.08234 

Table 3.	 Comparison between M0 and M1

( ),n m
M0 M1

Log-LF AIC Log-LF AIC

(10,5) -84.74 179.49 -87.37 186.74

(15,5) -131.85 273.70 -136.49 284.98

(10,10) -172.31 354.61 -176.53 365.06

(10,20) -346.60 703.20 -355.40 722.80

Table 4.	 MSE and MRE of the estimates from M0 with 2
eσ =2

( ),n m
(10,5) (10,10) (10,20) (15,5)

MSE MRE MSE MRE MSE MRE MSE MRE

a 0.35732 0.13585 0.18803 0.09929 0.09070 0.06848 0.30942 0.12606

b 0.01693 0.05755 0.00896 0.04196 0.00445 0.02960 0.01112 0.04683

1d 0.11282 0.60780 0.08987 0.52449 0.05958 0.40829 0.12081 0.61106

2d 0.00887 0.43454 0.00492 0.31110 0.00232 0.21554 0.00442 0.29287

σe
2 0.28193 0.22025 0.16406 0.16294 0.08109 0.11429 0.22876 0.19370

0.5t 0.46760 0.04703 0.24449 0.03450 0.12272 0.02463 0.34283 0.04061

0.05t 0.49531 0.06087 0.23498 0.04215 0.11174 0.02923 0.32773 0.04890

Table 5.	 MSE and MRE of the median life and the 5th percentile of FTD from M1 with 2=2eσ

( ),n m
(10,5) (10,10) (10,20) (15,5)

MSE MRE MSE MRE MSE MRE MSE MRE

0.5t 1.03008 0.06834 0.56829 0.04996 0.30952 0.03654 1.46605 0.07764

0.05t 1.09847 0.09086 0.66783 0.07094 0.39708 0.05587 1.13559 0.08756

Table 6.	 Comparisons of two fitted degradation models

Model Parameters

M1

a b µ 2κ 2σ 2
eσ Log-LF AIC

0.3187 0.1320 1.9340 0.0060 0.2092 0.0054 30.30 -48.60

M0

a b 1d 2d -- 2
eσ Log-LF AIC

0.5573 0.2187 0.2322 0.0604 -- 0.0025 32.29 -54.57

M2 0.5647 0.2135 0.2334 0.0708 -- -- 30.23 -52.46
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approximately linear over time. In such a case, the proposed model can 
effectively capture the degradation of storage disks without any transfor-
mation of test time and performance; viz. x t=  and y z=  .

For comparison, let the time-transformed be ( )t a btΛ = +  in the 
reference model M1. We firstly apply M0 and M1 to fit the degradation 
data shown in Fig.1 to study the efficiency of the proposed model M0. 
Moreover, to show the necessity of incorporating measurement errors 
into the degradation model, the proposed model that removed the 
measurement error term is considered as model M2 and used to fit the 

degradation data. The Log-LF values and the AIC values are calcu-
lated to test the fit of each model. The obtained results are sum-
marized in Table 6. From Table 6, it is clear that the proposed 
model gives a better fitting both in terms of the Log-LF and AIC.

To demonstrate the goodness of fit, the mean degradation 
paths estimated from the two approaches are compared with the 
sample average. Based on the estimates in Table 6, the estimated 
mean degradation paths are shown in Fig. 3, which shows that 
the estimated mean degradation path based on the proposed 
model is in conjunction with the sample average, and the two 
curves tally quite well. However, the estimated mean degrada-
tion path from the reference model M1 does not match the sam-
ple average well.

For further illustration, we calculate the 10th percentile of 
the block error rates of magneto-optic data storage disks. The 
estimated results are shown in Fig. 4. The 10th percentile of 
the block error rates  ( )0.1y t  means that 90% of the population 
of the disks performance degradation ( )y t  should be below 

Fig. 1. Degradation paths of 16 magneto-optic data storage disks

Fig. 2. Mean and standard deviation path

Fig. 3. Estimated mean paths based on M0 and M1
Fig. 4. Estimated 10th percentile curve of the two approaches

Fig. 5.	 Residual plot for degradation data: (a) the proposed model M0; (b) the reference 
model M1

Table 7.	 The estimated median life and 10th percentile of FTD

Failure time/103h
Model

M0 M1

0.50t 20.31 17.17

0.10t 14.00 13.70
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 ( )0.1y t . In the test span, 80 performance degradation data 
are measured. From Fig. 4, we observe that there are 8 above 
the 10th percentile of the block error rates  ( )0.1y t  estimated 
from the proposed model M0, while 6 performance degrada-
tion data above that from the reference model M1. Therefore, 
the proposed model gives more accurate results.

The median life and the 10th percentile of FTD, which 
play an important role in making maintenance plan, are esti-
mated through the two approaches, as given in Table 7. As we 
know that, the estimated variance determines the interval be-
tween the median life 0.50t  and the 10th percentile of FTD 

0.10t , and a larger variance estimation leads to a larger inter-

val. From Table 7, we can observe that the interval between the me-
dian life 0.50t  and the 10th percentile of FTD 0.10t  obtained from the 

reference model is smaller than that from the proposed method. This 
means a smaller variance estimation is obtained by the reference ap-
proach. As previously discussed, the mean degradation path of the 
proposed model better fits the sample average, and the 10th percentile 
of the block error rates of the proposed model is more reasonable. 
Consequently, if the results listed in Table 7 are used for maintenance 
schedule, the reference model will lead to premature maintenance 
which can reduce the product’s utilization. 

In addition, the residual plots are given based on the proposed 
model over time, the results are shown as Fig. 5. Fig. 5 indicates that 
the two models both perform well.

5.2.	 Infrared light-emitting diodes degradation modeling

Infrared light-emitting diodes (IRLEDs) are high-reliability opto-
electronic devices widely used in communication systems. The per-
formance of the devices is measured mainly by the variation ratio of 

luminous power. To estimate the reliability, 5 units were tested at the 
operating current of 320 mA. A failure is said to have occurred if the 
ratio is greater than 19%. The original data are presented in [19], as 
shown in Fig. 6. 

According to a preliminary statistical analysis, we observe that it 
is not necessary to transform the time and performance. Again, M0, 
M1 and M2 are used to fit the data respectively. The ML estimates 
of the parameters and the maximum log-likelihood values are sum-
marized in Table 8. From Table 8, it can be observed that although 
the maximum log-likelihood values are equal, the number of the un-
known parameters of M0 is less than the other two models.

To test the goodness-of-fit, we calculate the median life 0.50t  and 

the 10th percentile of the FTD 0.10t  based on M0 and M1 respectively, 
and the results are given in Table 9. From the definition viewpoint, 

the 10th percentile of the FTD 0.10t
 
means that an average of 90% 

of the population of products will not fail before 0.10t . On the other 

hand, we know that the distance between 0.50t
 
and 0.10t  corresponds 

to the estimated dispersion. From Table 9, it is clear that the variance 
inferred from the proposed method M0 evolves slower than that from 
the reference method M1.

Furthermore, the 10th percentiles of the ratio of luminous power 
of 5 IRLEDs are given by the proposed model and the reference mod-
el respectively. The results are depicted in Fig. 7. As can be seen from 
this figure, the ratio of the number of test data above the 10th percen-
tile and the total number of test data obtained by the proposed model 
is more close to 10%. Meanwhile, the residual plots shown in Fig. 8 
also demonstrate that the proposed model can perform well.

The reliability is estimated based on the proposed model. Mean-
while, we extrapolate the degradation paths to the failure threshold to 
obtain the pseudo failure time for each unit and calculate the empiri-
cal reliability by Kaplan-Meier method. The results are displayed in 
Fig. 9. Fig. 9 shows that the estimated reliability curve performs well 
with the empirical reliability. 

Moreover, from the viewpoint of sample size, there are 5 units in 
IRLEDs degradation test. And 5 can be considered as a small sample. 
So it can be concluded that the proposed approach can ensure a good 
performance no matter the sample size is large enough or consider-
ably small.

Fig. 6. The ratio of luminous power

Fig. 7. Estimated 10th percentile performance curve of M0 and M1

Table 8.	 Comparisons of two fitted degradation models

Model Parameters

M1
a b µ 2κ 2σ 2

eσ Log-LF AIC

1.7886 0.0909 0.8176 0.0082 1.1997 0.0078 -110.69 233.38

M0
a b

1d 2d -- 2
eσ Log-LF AIC

1.6572 0.0760 1.4662 0.0173 -- 0.0075 -110.69 231.38

M2 1.6169 0.0805 1.3107 0.0180 -- -- -112.49 232.97

Table 9.	 Comparisons of median life and 10th percentile of FTD

Failure time/h
Model

M0 M1

0.50t 228.05 235.86

0.10t 157.50 156.31
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6. Conclusion

In this paper, we propose a Wiener process model with linear 
mean function and standard deviation function, which allows us 
to take measurement error into considerations simultaneously. 
Comparing with the traditional time-transformed Wiener proc-
ess, the proposed model can be considered as a more general-
ized Wiener process model with two different transformed time 
scales. Statistical inferences of this model are discussed, and a 
close form of product’s median life and percentile of the FTD 
are also derived.

Simulation studies show that analysis precision can be en-
hanced while involving more items or setting more inspection 
times, and reasonable median life and FTD percentiles can still 
be derived with a considerably small sample size of 5m =  via 
the proposed method. Empirical studies with storage disks and 
IRLEDs degradation illustrate the reasonability and effective-

ness of the proposed approach.
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