PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A six-port measurement device for high power microwave vector network analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The changes experienced in technology due to the third industrial revolution have over the years contributed immensely to the development of efficient devices and systems. As a result, solutions have been provided to challenges encountered in the heating industry. However, higher efficiency and better performance has undoubtedly been highly sort after. This paper presents the complete industrial development of a new system of a microwave device for use in S-band networks (2.45 GHz ISM band in this application): a vector network analyzer (VNA). The VNA, which is designed based on the six-port measurement principle, provides accurate measurements of both magnitude and phase of the load reflection coefficient. The device is designed to have high power handling capabilities and works under the full operating conditions of high-power microwave generators. Initial measurements show that the device perform stable and can perform temperature-independent measurements over protracted periods. The system is suited for on-line monitoring and control of network parameters in industrial waveguide applications.
Rocznik
Strony
105--129
Opis fizyczny
Bibliogr. 24 poz., fig.
Twórcy
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
  • Kwame Nkrumah University of Science and Technology, Faculty of Electrical and Computer Engineering, Department of Computer Engineering, Kumasi, Ghana
Bibliografia
  • [1] 1 MHz to 8 GHz, 70 dB Logarithmic Detector/Controller. AD8318. (2019). Analog Devices Inc. http://static6.arrow.com/aropdfconversion/c131abb3e072c9996e733ced0e5cd0a20107716d/ad8318-ep.pdf
  • [2] 12-Bit, 4-Channel Serial Output Sampling Analog-to-Digital Converter. AD8318. (2001). Texas Instruments Inc. https://www.ti.com/lit/ds/sbas469c/sbas469c.pdf?ts=1663959751768&ref_url=https%253A%252F%252Fwww.google.com%252F
  • [3] 2-Bit Bidirectional Voltage-Level Translator for Open-Drain and Push-Pull Applications. TXS0102. (2018). Texas Instruments Inc. https://www.ti.com/lit/ds/symlink/txs0102-q1.pdf?ts=1663942071269&ref_url=https%253A%252F%252Fwww.google.it%252F
  • [4] Amornraksa, S., & Sritangthung, T. (2020). Microwave-Assisted Pyrolysis of Fuel Oil for Hydrocarbons Upgrading. E3S Web of Conferences, 141, 01013. https://doi.org/10.1051/e3sconf/202014101013
  • [5] Arm®Cortex®-M4 32b MCU+FPU, (STM32F334x4 STM32F334x6 STM32F334x8). Datasheet. (2020). STMicroelectronics. https://datasheetspdf.com/datasheet/STM32F334R6.html
  • [6] BLM18KG121TN1D: Chip Ferrite Bead. (2020). Murata Electronics. https://www.murata.com/englobal/api/pdfdownloadapi?cate=&partno=BLM18KG121TN1%23
  • [7] Caiazzo, F., & Alfieri, V. (2018). Simulation of Laser Heating of Aluminium and Model Validation via Two-Color Pyrometer and Shape Assessment. Materials, 11(9), 1506. https://doi.org/10.3390/ma11091506
  • [8] De-chao, H. (2015). The Application Advantages of Microwave Fixation in Cotton Fabric Dyeing. International Conference on Education Technology, Management and Humanities Sciences (pp. 535–539). Atlantis Press.
  • [9] Elshemy, N. S. & Haggag, K. (2019). New Trend in Textile Coloration Using Microwave Irradiation. J. Text. Color. Polym. Sci., 16(1), 33–48.
  • [10] Engen, G. F. (1977). The Six-Port Reflectometer: An Alternative Network Analyzer. IEEE Transactions on Microwave Theory and Techniques, 25(12), 1075–1080. https://doi.org/10.1109/TMTT.1977.1129277
  • [11] Gartshore, A., Kidd, M. & Joshi, L. T. (2021). Applications of Microwave Energy in Medicine. Biosensors, 11(4), 96. https://doi.org/10.3390/bios11040096
  • [12] Implications of Slow or Floating CMOS Inputs. SCBA004D. (2016). Texas Instruments Inc. https://www.ti.com/lit/an/scba004e/scba004e.pdf?ts=1663946172219&ref_url=https%253A%252F%252Fwww.google.com%252F
  • [13] MacDonald, B., & Miadonye, A. (2018). Microwave Application in Petroleum Processing. Ecology, Pollution And Environmental Science: Open Access ( Eeo ), 1(1), 10–12.
  • [14] Miniature Linear Motion Series L12. (2019). Actuator Motion Devices Inc. https://s3.amazonaws.com/actuonix/Actuonix+L12+Datasheet.pdf
  • [15] Mohra, A. S. (2004). Six-Port Reflectometer Structure Using Two Microstrip Three-Section Couplers. Scientific Bulletin, Ain Shams University, Faculty of Engineering, 19(1).
  • [16] Moubarek, T., & Gharsallah, A. (2016). A Six-Port Reflectometer Calibration Using Wilkinson Power Divider. American Journal of Engineering and Applied Sciences, 9(2), 274–280. https://doi.org/10.3844/ajeassp.2016.274.280
  • [17] Moubarek, T., Almanee, M., & Gharsallah, A. (2019). A Calibrating Six-Port Compact Circuit using a New Technique Program. International Journal of Advanced Computer Science and Applications, 10(5), 491–497.
  • [18] Murzin, S. P., Kazanskiy, N. L., & Stiglbrunner, C. (2021). Analysis of the Advantages of Laser Processing of Aerospace Materials Using Diffractive Optics. Metal, 11(6), 963. https://doi.org/10.3390/met11060963
  • [19] Practical Design Techniques for Sensor Signal Conditioning. 1st Edition. (1999). Analog Devices Inc. https://www.analog.com/media/en/training-seminars/design-handbooks/Practical-Design-Techniques-Sensor-Signal/Outline.PDF
  • [20] Remote 8-Bit I/O Expander for I2C Bus. PCF8574. (2015). Texas Instruments Inc. https://www.ti.com/lit/ds/symlink/pcf8574.pdf
  • [21] Shah, S. R. M. (2019). Prospective Applications of Microwaves in Medicine. M.S. thesis, Uppsala University, Uppsala, Sweden.
  • [22] Sorică, E., Sorică, C. M., Cristea, M., & Grigore, I. A. (2021). Technologies used for food preservation using microwave. E3S Web of Conferences, 286, 04008. https://doi.org/10.1051/e3sconf/202128604008
  • [23] Ultraprecision, Low Noise, 2.048 V/ 2.500 V/ 3.00 V/ 5.00 V XFET ® Voltage References. ADR420/ ADR421/ ADR423/ ADR425. (2013). Analog Devices Inc. https://www.farnell.com/datasheets/101790.pdf
  • [24] Vishnuram, P., Ramachandiran, G., Sudhakar, B. T., & Nastasi, B. (2021). Induction Heating in Domestic Cooking and Industrial Melting Applications: A Systematic Review on Modelling, Converter Topologies and Control Schemes. Energies, 14(20), 6634. https://doi.org/10.3390/en14206634
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3917d86-c097-40f6-a824-6c366776162f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.