PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear modelling of Activated Sludge Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (18-19.04.2016 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
A computer simulation model for the Activated Sludge Process (ASP) of a wastewater treatment plant (WWT) is presented in this paper. The model is based on non-linear equations, which depend on wastewater concentration and flow, which values vary with time. The proposed ASM1R3 model is a reduced version of the common ASM1 model due to the fact it involves only three state variables: Ss –the dissolved biodegradable organic substrate, SNO – the dissolved nitrate nitrogen and SNH – the dissolved ammonia nitrogen. In an experimental verification the model was considered as well fitted to empirical data. The proposed model is characterized by relatively low computational complexity and can be successfully applied as integral part of the overriding control systems of the WWT plant. As a result of conducted studies it was found that it is possible to apply the ASM1R3 model to optimize and improve the WWT process parameters of the regarded plant.
Rocznik
Tom
Strony
187--197
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Opole University of Technology
Bibliografia
  • [1] Babuna F., Germirli Orhon D. et al., (1998), Modelling of activated sludge for textile wastewaters Wat., Sc. Technol., 38(4-5), pp. 9-17.
  • [2] Bitton G. (2005), Wastewater Microbiology, 3rd Edition, Chapter 8. Activated Sludge Process.
  • [3] Boursier H., Béline F., Paul E., (2005), Piggery wastewater characterization for biological nitrogen removal process design, Bioresource Technol., 96(3), pp. 351-358.
  • [4] Copp J.B., (2002), The COST Simulation Benchmark: Description and Simulator Manual, Office for Official Publications of the European Community, Luxembourg. ISBN 92-894-1658-0.
  • [5] Fall C., Millán-Lagunas E., Bâ K.M., Gallego-Alarcón I., García-Pulido D., Díaz-Delgado C., Solís-Morelos C., (2012), COD fractionation and biological treatability of mixed industrial wastewaters, J. Environ. Manage., 113, pp. 71-77.
  • [6] Gernaey K.V., van Loosdrecht M.C.M., et al (2004), Activated sludge wastewater treatment plant modelling and simulation: state of the art, Environ. Model. Soft., 19(9), 7, pp. 63-783.
  • [7] Gujer W., (2006), Activated sludge modelling: past, present and future Wat. Sci. Tech., 53(3), pp. 111-119.
  • [8] Henze M., Gujer W., Mino T. and van Loosdrecht M., (2000), Activated sludge models ASM1, ASM2, ASM2D and ASM3, IWA Scientific and Technical Report No.9. IWA Publishing, London, UK.
  • [9] Lin Z. and Lu S., (2011), Simulation of closed double-sludge retention time anoxic-oxic process in wastewater treatment: case study for a utility model process, Wat. & Envir. J., 25, pp. 573-587.
  • [10] Liwarska-Bizukojc E., Olejnik D. et al., (2011), Calibration of a complex activated sludge model for the full-scale wastewater treatment plant, Bioproc. Biosyst. Eng., 34(6), pp. 659-670.
  • [11] Makinia J., Swinarski M., Dobiegala E., (2002) Experiences with computer simulation at two large wastewater treatment plants in northern Poland Wat. Sci. Tech., 45(6), pp. 209-218.
  • [12] Murnleitner E., Kuba T., van Loosdrecht M.C.M. and Heijnen J.J. (1997), An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal Biotechnol. Bioeng., 54, pp. 434-450.
  • [13] Ostace G.S., Cristea V.M., et al., (2011), Cost reduction of the wastewater treatment plant operation by MPC based on modified ASM1 with two-step nitrification/denitrification model, Comp. Chem. Eng., 35(11), pp. 2469-2479.
  • [14] Petersen B., Gernaey K. et al., (2002), Evaluation of an ASM1 model calibration procedure on amunicipal–industrial wastewater treatment plant, IWA Publishing J. of Hydroinform.
  • [15] Plessis S.,Tzoneva R., (2012), Sensitivity study of reduced models of the activated sludge process, for the purposes of parameter estimation and process optimization: Benchmark process with ASM1 and UCT reduced biological models, Water SA, 38(2), pp. 287-306.
  • [16] Sadecka Z., Jędrczak A., Płuciennik-Koropczuk E., Myszograj S. and Suchowska-Kisielewicz M., (2013), COD Fractions in Sewage Flowing into Polish Sewage Treatment Plants, Chem. Biochem. Eng. Q., 27(2), pp. 185-195.
  • [17] Smith, M. and Dudley, J. (1998), Dynamic Process Modelling of Activated-Sludge Plants, Wat. & Envir. J., 12(5), pp. 346-356.
  • [18] Stokes A.J., West J.R., Forster C.F. and Davis W.J., (2000), Understanding some of the differences between the COD- and BOD- based models offered in STOAT, Water Res., 34(4), 1296-1306.
  • [19] Van Veldhuizen H.M., van Loosdrecht M.C.M., Heijnen J.J., (1999), Modeling biological phosphorus and nitrogen removal in a full scale activated sludge process, Water Res., 33 pp. 3459-3468.
  • [20] Pinkiewicz I., Kaźmierski M., Olech W., Malinowski J., Sopocki R., On-site Processing of Insulation System of Large Power Transformers and Hot-spot Computer Determination, CIGRE, Session 2004, A2-208.
  • [21] Zhou L.J., Wu G.N., Yu J.F., Zhang X.H., Thermal Overshoot Analysis for Hot-Spot Temperature Rise of Transformer, IEEE Transactions on Dielectrics and Electrical Insulation, Volume 14, Number 5, ISSN 1070-9878, 2007.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d38dfc95-b1f2-480f-8375-13e04626f030
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.