PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The Optimum-efficiency Beam Multiplier for an Arbitrary Number of Output Beams and Power Distribution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with phase gratings working in the paraxial domain. The profile of the optimum-efficiency beam multiplier with an arbitrary number of output diffraction orders is derived in an analytic form by exploiting methods from the calculus of variation. The output beams may be equi-intense or with arbitrary distribution of power. Numerical examples are given for different values of the number of output beams.
Rocznik
Tom
Strony
94--98
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
autor
  • National Institute of Telecommunications, Warsaw, Poland
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
Bibliografia
  • [1] G. J. Swanson, “Binary optics technology: the theory and design of multi-level diffractive optical elements”, Tech. Rep. no. TR-854, Massachusetts Institute of Technology, Lexington Lincoln Lab., pp. 1–47, 1989 [Online]. Available: www.dtic.mil/dtic/tr/fulltext/ u2/a213404.pdf
  • [2] L. Pajewski, R. Borghi, G. Schettini, F. Frezza, and M. Santarsiero, “Design of a binary grating with subwavelength features that acts as a polarizing beam splitter”, Appl. Optics, vol. 40, no. 32, pp. 5898–5905, 2001.
  • [3] G. H. Dammann and K. Görtler, “High efficiency in-line multiple imaging by means of multiple phase holograms”, Optics Commun., vol. 3, no. 5, pp. 312–315, 1971.
  • [4] H. Dammann and E. Klotz, “Coherent optical generation and inspection of two-dimensional periodic structures”, Opt. Acta, vol. 24, no. 4, pp. 505–515, 1977.
  • [5] F. Gori et al., “Analytical derivation of the optimum triplicator”, Optics Commun., vol. 157, no. 1–6, pp. 13–16, 2008.
  • [6] R. Borghi, F. Frezza, L. Pajewski, M. Santarsiero, and G. Schettini, “Optimum even-phase four-beam multiplier”, Optical Engin., vol. 41, no. 11, pp. 2736–2742, 2002.
  • [7] J. Song, Y. Li, X. Zhou, and X. Li, “Planar grating multiplexers using silicon nanowire technology: numerical simulations and fabrications”, Progress in Electromag. Res., vol. 123, pp. 509–526, 2012.
  • [8] J. L. Jiang, H. Wu, L. Y. Jiang, and X. Y. Li, “Genetic optimization of double subwavelength metal slits sorrounded by surface dielectric gratings for directional beaming manipulation”, Optics Commun., vol. 285, no. 8, pp. 2201–2206, 2012.
  • [9] G. Bloom et al., “Design and optimization of a high-efficiency array generator in the mid-IR with binary subwavelength grooves”, Appl. Optics, vol. 50, no. 5, pp. 701–709, 2011.
  • [10] F. Wyrowski, “Upper bound of the diffractive efficiency of diffractive phase elements”, Opt. Letters, vol. 16, no. 24, pp. 1915–1917, 1991.
  • [11] U. Krackhardt, J. N. Mait, and N. Streibl, “Upper bound on the diffraction efficiency of phase-only fan out elements”, Appl. Optics, vol. 31, no. 1, pp. 27–37, 1992.
  • [12] F. Wyrowski, “Design theory of diffractive elements in the paraxial domain”, J. Opt. Soc. of America A, vol. 10, no. 7, pp. 1553–1561, 1993.
  • [13] J. Tervo and J. Turunen, “Paraxial-domain diffractive elements with 100% efficiency based on polarization gratings”, Opt. Lett., vol. 25, pp. 785–786, 2000.
  • [14] R. Borghi, F. Frezza, L. Pajewski, M. Santarsiero, and G. Schettini, “Full-wave analysis of the optimum triplicator”, J. Electromag. Waves Appl., vol. 15, no. 6, pp. 689–708, 2001.
  • [15] F. Aroca and I. Moreno, “Comparison and experimental realization of different phase only grating designs and optimal triplicators”, Optica Pura y Aplicada, vol. 49, no. 3, pp. 155–166, 2016.
  • [16] M. Born and E. Wolf, Principles of Optics, 7th ed. Cambridge University Press, 1999.
  • [17] F. Frezza, L. Pajewski, and G. Schettini, “Characterization and design of two-dimensional electromagnetic band-gap structures by use of a full-wave method for diffraction gratings”, IEEE Trans. Microwave Theory Techniq., vol. 51, no. 3, pp. 941–951, 2003.
  • [18] G. Zheng et al., “Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entiredomain basis functions and wavelets”, Progress in Electromag. Res., vol. 99, pp. 453–463, 2009.
  • [19] J.-J. Liau et al., “A new look at numerical analysis of uniform fiber Bragg gratings using coupled mode theory”, Progress in Electromag. Res., vol. 93, pp. 385–401, 2009.
  • [20] N.-H. Sun et al., “Numerical analysis of apodized fiber Bragg gratings using coupled mode theory”, Progress in Electromag. Res., vol. 99, pp. 289–306, 2009.
  • [21] J. Frances, C. Neipp, A. Marquez Ruiz, A. Belendez, and I. Pascual, “Analysis of reflection gratings by means of a matrix method approach”, Progress in Electromag. Res., vol. 118, pp. 167–183, 2011.
  • [22] F. Frezza, L. Pajewski, and G. Schettini, “Fast and accurate modeling of finite-thickness 2D-EBG structures made by circular-section rods”, Microwave and Optical Technol. Lett., vol. 39, no. 6, 433–437, 2003.
  • [23] F. Frezza, L. Pajewski, and G. Schettini, “Periodic defects in 2DPBG materials: Full-wave analysis and design”, IEEE Trans. Nanotechnol., vol. 2, no. 3, pp. 126–134, 2003.
  • [24] F. Frezza, L. Pajewski, and G. Schettini, “Fractal two-dimensional electromagnetic band-gap structures”, IEEE Trans. Microwave Theory Techniq., vol. 52, no. 1, pp. 220–227, 2004.
  • [25] F. Frezza, L. Pajewski, and G. Schettini, “Numerical investigation on the filtering behavior of 2D-PBGs with multiple periodic defects”, IEEE Trans. Nanotechnol., vol. 4, no. 6, pp. 730–739, 2005.
  • [26] F. Frezza, L. Pajewski, and G. Schettini, “Full-wave Characterization of three-dimensional photonic bandgap structures”, IEEE Trans. Nanotechnol., vol. 5, no. 5, pp. 545–553, 2006.
  • [27] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Design and fabrication of a 3D-EBG superstrate for patch antennas”, in Proc. 39th Eur. Microwave Conf. EuMC 2009, Rome, Italy, 2009, pp. 1496–1499.
  • [28] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Analysis and experimental characterization of an alumina woodpilecovered planar antenna”, in Proc. 40th Eur. Microwave Conf. EuMC 2010, Paris, France, 2010, pp. 200–203.
  • [29] F. Frezza, L. Pajewski, E. Piuzzi, C. Ponti, and G. Schettini, “Advances in EBG-resonator antenna research”, in Proc. Int. Symp. on Antennas and Propagation ISAP 2012, Nagoya, Japan, 2012, pp. 1301–1304.
  • [30] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Directive propagation in two EBG structures: a comparison”, 2013 IEEE MTTS Int. Microwave Symp. Digest IMS 2013, Seattle, WA, USA, 2013, (doi: 0.1109/MWSYM.2013.6697579).
  • [31] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Comparison between two methods for directivity enhancement of antennas through 2-D EBGs”, in Proc. 2013 Progress in Electromag. Res. Symp. PIERS 2013, Stockholm, Sweden, 2013, pp. 557–561.
  • [32] F. Frezza, L. Pajewski, E. Piuzzi, C Ponti, and G. Schettini, “Radiation-enhancement properties of an X-band woodpile EBG and its application to a planar antenna”, Int. J. on Antennas and Propag., vol. 2014, Article ID 729187, 2014 (doi: 10.1155/2014/729187).
  • [33] S. Ceccuzzi, L. Pajewski, C. Ponti, and G. Schettini, “Directive EBG antennas: a comparison between two different radiating mechanisms”, IEEE Trans. on Antennas and Propag., vol. 62, no. 10, pp. 5420–5424, 2014 (doi: 10.1109/TAP.2014.2346174).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d38a491c-ed48-43f9-b209-4cf3b348feea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.