PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiological hazard assessment due to natural radioactivity content in cement material used in Iraqi Kurdistan region

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An investigation was conducted to determine radon concentrations, radon exhalation rate, and potential radiological hazard parameters associated with cement collected from five factories in Sulaymaniyah city, Kurdistan region, Iraq. Using solidstate nuclear track detectors such as CR39, the samples were analyzed by etching processes. The average radon concentration, radium concentration, and radon exhalation rate were 138.16 Bq m-3 , 0.254 Bq kg-1 , and 0.317 Bq m-2 h-1 , respectively. In sample 14, radon concentrations were within the suggested range of 200-600 Bq m-3, and the radon exhalation rate was well below the global average of 57.600 Bq m-2 h-1. In addition, parameters related to potential radiological hazards were calculated for cement samples, the average annual effective dose indoor and outdoor were 3.49 and 1.31 mSv y-1 , so this study's value was within the global average limitations (1-5 mSv y-1 ). Also, the excess lifetime cancer risk indoor and outdoor were 12.5 X 10-3 and 4.69 X 10-3 greater than the world value of 0.29 X 10-3.
Czasopismo
Rocznik
Strony
549--556
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
  • Department of Physics, College of Science, University of Raparin, Sulaymaniyah, Ranya 46012, Iraq
Bibliografia
  • 1. Ahmad N, Jaafar MS, Khan SA, Nasir T, Ahmad S, Rahim M (2014) Measurement of radon exhalation rate, radium activity and annual effective dose from bricks and cement samples collected from Dera Ismail Khan. Am J Appl Sci 11(2):240
  • 2. Ahmad N, Nasir T, Rizwan S, Ullah H, Bakhsh M (2019) Evaluation of 222Rn and 226Ra concentrations in cement and limestone of Sheikh Buddin Hill, Pezu, Pakistan using different techniques. Int J Environ Anal Chem 99(7):683-691
  • 3. Ahmed IK, Khalaf HNB, Mostafa MYA (2022) Estimating radon excess lung cancer at the babylon cement plant in Iraq. J Nucl Eng Radiat Sci 8(3):032003
  • 4. Alrowaili ZA (2023) Nature of radon, radium, exhalation and uranium concentration from construction materials used in Al Jouf city, Saudi Arabia. J Radiat Res Appl Sci 16(3):100579
  • 5. Appleton JD (2012) Radon in air and water, Essentials of medical geology: revised edition. Springer, New York, pp 239-277
  • 6. Arena C, De Micco V, Macaeva E, Quintens R (2014) Space radiation effects on plant and mammalian cells. Acta Astronaut 104(1):419-431
  • 7. Bulut HA, Şahin R (2024) Radon, concrete, buildings and human health—a review study. Buildings 14(2):510
  • 8. Durrani SA, Ilic R (1997) Radon measurements by etched track detectors-applications in radiation protection, earth sciences. World Scientific, New Jersey
  • 9. Faheem M (2008) Radon exhalation and its dependence on moisture content from samples of soil and building materials. Radiat Meas 43(8):1458-1462
  • 10. Guo S-L, Chen B-L, Durrani SA (2020) Solid-state nuclear track detectors, handbook of radioactivity analysis. Elsevier, New Jersey, pp 307-407
  • 11. Hiwa MQ (2020) Stopping power of alpha particles in helium gas. Bull Mosc State Tech Univ NE Bauman Ser Nat Sci (2 (89)): 117-125 Hryhorczuk D, Levy BS, Prodanchuk M, Kravchuk O, Bubalo N, Hryhorczuk A, Erickson TB (2024) The environmental health impacts of Russia’s war on Ukraine. J Occupat Med Toxicol 19(1):1
  • 12. ICRP (1993) Protection against radon-222 at home and at work. A report of a task group of the international commission on radiological protection. Ann ICRP 23(2):1-45
  • 13. ICRP (2009) International commission on radiological protection statement on radon. Ref, 00/902/09
  • 14. Idriss H, Salih I, Alaamer AS, Al-Rajhi MA, Osman A, Adreani TE, Abdelgalil MY, Ali NI (2018) Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan. Acta Geophys 66:673-681
  • 15. Khan A, Al Qahtani S, Wijdan ALM, Al-Naggar TI, Alhamami M, Abdalla AM (2023) Efficient and fast detection of alpha particles using CR-39 detector. Radiat Phys Chem 213:111237
  • 16. Little MP, Bazyka D, Gonzalez ABd, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N (2024) A historical survey of key epidemiological studies of ionizing radiation exposure. Radiat Res 202(2):432-487
  • 17. Mansy MS, Ghobashy MM, Aly MI (2024) Enhancing gamma and neutron radiation shielding efficiency of LDPE/PVC polymers using cobalt, aluminum, and magnesium oxide fillers. Radiat Phys Chem 222:111862
  • 18. Muneam RR, Abojassim AA (2023) Assessment of health risk of exposure to alpha-emitters in cheese samples collected from iraqi markets. Atom Indonesia 1(1):39-44
  • 19. Naji TF, Hassoon SO (2021) Measuring of Radon Gas Concentrations in serum samples of Lung cancer patients in Babylon governorate, Iraq. J Phys Conf Ser 1999(1):012054
  • 20. National Research C, National Research C, Commission on Life S, Board on Radiation Effects R, Committee on Health Risks of Exposure to R (1999) Health effects of exposure to radon: BEIR VI. National Academy Press, Washington
  • 21. Othman SM, El-Mesady IA, El-badawy AS, Ghanim EH (2024) The impact of the broad range of gamma doses on follow-up fission fragment track parameters in CR-39 radiation detector. Appl Radiat Isot 208:111253
  • 22. Perle S (2018) NCRP report no. 179, guidance for emergency response dosimetry, LWW
  • 23. Prusty P, Sahu A, Jha SK (2024) Assessment of radon (222Rn) and thoron (220Rn) in environmental resources of a high-background- radiation area. India MAPAN 39(1):139-148
  • 24. Qadr HM (2021) Pressure effects on stopping power of alpha particles in argon gas. Phys Part Nucl Lett 18:185-189
  • 25. Qadr HM (2022) Experimental study of the pressure effects on stopping power for alpha particles in air. Gazi Univ J Sci 35(1):272-279
  • 26. Qadr HM, Salih NF (2024) Reviewing the different types of heavy materials in the human teeth. Bull Int Assoc Paleodontol 18(1):52-62
  • 27. Rana D, Jha VN, Patnaik RL, Singh MK, Jha SK, Kulkarni MS (2023) Radon build-up in a prototype dwelling using uranium mill tailings as construction material. J Radioanal Nucl Chem 332(8):3113-3120
  • 28. Saleh EE, Al-Sobahi AMA, El-Fiki SAE (2021) Assessment of radon exhalation rate, radon concentration and annual effective dose of some building materials samples used in Yemen. Acta Geophys 69(4):1325-1333
  • 29. Salih N, Aswood M, Saleh D, Qadr H (2024) Determine the concentration of radon and uranium in different types of tea. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2024.2376902
  • 30. Salman JE, Hassan NM (2024) Evolution of radionuclide concentration and the radiological hazards in building material: a review. J Taibah Univ Sci 18(1):2370588
  • 31. Shoeib MY, Ahmed DA, Abd-Elraheem AF (2024) A study of 226Ra concentration and radon exhalation rates in different geopolymer cement samples using CR-39 solid state nuclear track detector. Radiat Phys Chem 216:111381
  • 32. Shrestha AK, Shrestha GK, Shah BR, Koirala RP (2024) Evaluation of natural radioactivity and radiological hazards associated with Nepalese cement. J Radioanal Nucl Chem 333(6):2821-2829
  • 33. Smoking T (1986) IARC monogr eval carcinog risk chern. Hum 38:35-394
  • 34. Sumesh CG, Jha SK, Patra AC, Aswal DK (2024) Evolution of analytical methods for radon measurement in India. Mapan 39(1):181-192
  • 35. Topęu N, Bięak D, ęam S, Eree§ FS (2013) Radon exhalation rate from building materials using CR-39 nuclear track detector. Indoor Built Environ 22(2):384-387
  • 36. UNSCEAR (2008) Report of the United Nations Scientific Committee on the effects of atomic radiation. general assembly 56. Session (10-18 July 2008). Official Records: 63. session, suppl. no. 46 (A/63/46), United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR)
  • 37. Unscear S (2000) Effects of ionizing radiation. United Nations, New York, pp. 453-487
  • 38. Unscear UN (2000) Sources and effects of ionizing radiation. United Nations Scientific Committee on the Effects of Atomic Radiation
  • 39. Vasidov A, Vasidova S (2020) CR-39 track detectors for measurements of radon volume activity and exhalation rates of the new houses of the Tashkent city. J Radioanal Nucl Chem 325(2):391-396
  • 40. World Health O (2009) WHO handbook on indoor radon: a public health perspective World Health Organization
  • 41. Yousef HA, Korany KA, Salama MA, Mitwalli M (2024) Assessment of radon in traditional building materials using polymeric nuclear track detector. Radiat Eff Defects Solids 1-10
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3880d24-665a-4201-9a49-75ff86689ff6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.