PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Relationships Among Global Climate Indices, Rainfall Patterns, and Crop Productivity in the Southern Part of Java, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In tropical countries, especially Indonesia, even though there is a notable correlation between rainfall pattern and indices of global climate, limited proof exists regarding the impact on crop productivity. Global climate indices are one of the indicators to identify the occurrence of climate change, but there is little research on climate change in Indonesia. In this research, the relationships among indices of global climate are represented by the southern oscillation index (SOI) and the sea surface temperature (SST) such as Nino. West, the Indian Ocean Basin-Wide (IOBW), and Nino 3, then the pattern of rainfall distribution and crop productivity during 10 years from 2012 to 2022 in the southern part of Java. The southern part of Java which is represented by Gunung Kidul District is a rain-fed area, and its location is in hilly topography so rainfall will be an important factor in this area, not only for daily life but also for agricultural sector purposes. The purpose of the study was to discover the relationship between global climate indices, rainfall distribution pattern and crop productivity in the Southern Part of Java, Indonesia. Rainfall distribution pattern for 10 years was calculated and displayed with spatial method, then principal component analysis (PCA) was used to analyse SST, and correlation analyses were used, along with wet and dry seasons as well as crop productivity. The results showed that from 2012 to 2022, high rainfall and correlation with global climate indices occurred in the southern and western part of Gunung Kidul district, and correlation among rainfall patterns and crop productivity showed significant correlations in some sub-districts. This result also showed that the relationships among global climate indices and rainfall distribution pattern can be influenced the agricultural productivity in the rainfed areas.
Twórcy
  • Department of Agricultural and Biosystem Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
autor
  • Department of Civil and Environmental Engineering, IPB University, Bogor, West Java, Indonesia
  • Department of Agricultural, Universitas Pembangunan Nasional Veteran Jawa Timur, East Java, Indonesia
  • Department of Agricultural and Biosystem Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
  • Department of Soil Science, Universitas Gadjah Mada, Yogyakarta, Indonesia
Bibliografia
  • 1. Agricultural Service for Food Crops and Horticulture, Gunung Kidul district. 2009. Rainfall database in GunungKidul district, 10–130.
  • 2. Anders, A.M., Roe, G.H., Hallet, B., Montgomery D.R., Finnegan, N.J., Putkonen J. 2006. Spatial patterns of precipitation and topography in the Himalaya. Geological Society of America 398, 39–53.
  • 3. Bayu, D.A.N., Ardiansyah, O.D.P., Kanno, H., Sameshima, R., Fujii, H., Lopez, L.C.M.. 2013. Relationships between global climate indices and rain-fed crop yields in highland of South-Central Java, Indonesia, Journal of Geography 122 (3), 438–447.
  • 4. Gunung Kidul Agricultural Office, Gunung Kidul district. 2023. Rainfall database in Gunung Kidul district, 10–130.
  • 5. Gunungkidul district, Indonesia. 2016. Geographical conditions in GunungKidul district. http://www.gunungkidulkab.go.id/home.php?mode=content&id=78
  • 6. Hamada J.I., Yamanaka M.D., Mori S., Tauhid Y.I., Sribimawati. 2008. Differences of rainfall characteristics between coastal and inferior areas of central western Sumatera, Indonesia. Journal of the Meteorological Society of Japan, 86(5), 593–611.
  • 7. Haylock, M., McBride J. 2001 Spatial coherence and predictability of Indonesian wet season rainfall. J. Climate 14, 3882–3887.
  • 8. Japan Meteorological Agency, 2010. El Nino Index data, retrieved from the statistical climate service at http://www.data.jma.go.jp/gmd/cpd/db/elnino/index/dattab.html
  • 9. Kirono D.G.C and Tapper N.J. 1999. ENSO rainfall variability and impacts on crop production in Indonesia. Physical Geography, 20, 6, 508–519.
  • 10. Maharani, D., Sudomo, A., Swestiani, D., Handayani, W. 2023. Land optimization using tubers based agroforestry system in Semin, Gunung Kidul. IOP Conference Series: Earth and Environmental Science, 1160. https://doi.org/10.1088/1755-1315/1160/1/012069
  • 11. Martinez, C.J., Baigorria, G.A. and Jones, J.W. 2009. Use of climate indices to predict corn yields in southeast USA. International Journal of Climatology, 29, 1680–1691.
  • 12. Massari, C., Brocca, L., Pellarin, T., Abramowitz, G., Filippucci, P., Ciabatta, L., Maggioni, V., Kerr, Y., Prieto, D. 2020. A daily 25km short-latency rainfall product for data-scarce regions based on the integration of the Global Precipitation Measurement mission rainfall and multiple-satellite soil moisture products. Hydrology and Earth System Sciences. https://doi.org/10.5194/hess-24-2687-2020
  • 13. Ngongo, Y., Basuki, T., deRosari, B., Mau, Y., Noerwijati, K., daSilva, H., Sitorus, A., Kotta, N., Utomo, W., Wisnubroto, E. 2022. The roles of cassava in marginal semi-arid farming in East Nusa Tenggara—Indonesia. Sustainability. https://doi.org/10.3390/su14095439
  • 14. Nicholls N. 1981. Air-sea interaction and the possibility of long-range weather prediction in the Indonesian archipelago. Mon. Wea. Rev., 109, 2435–2443.
  • 15. Nicholls N. 1984. The Southern Oscillation and Indonesia sea surface temperature. Mon. Wea. Rev., 112, 424–432.
  • 16. Yamazaki, N., Kamahori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji N., Taira, R. 2007. The JRA-25 Reanalysis. J. Meteor. Soc. Japan, 85, 369–432.
  • 17. Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vet- terling, W.T. 1989. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York, NY, USA, 702.
  • 18. Restitiasih, W.M., Sukarasa, I.K., Yuda, I.W.A., 2019. The Correlation of Southern Oscillation Index (SOI) with the Rainfall at Rainy and Dry Season Peak in Kintamani-Bangli Region period 1986–2015. Buletin Fisika, 20, 6–11.
  • 19. Roe, G.H. 2005 Orographic precipitation. Annu. Rev. Earth Planet. Sci 33, 645–71.
  • 20. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T. 1999 A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.
  • 21. Shetty, S., Umesh, P., Shetty, A., 2022. Dependability of rainfall to topography and micro-climate: an observation using geographically weighted regression. Theor Appl Climatol 147, 217–237. https://doi.org/10.1007/s00704-021-03811-w
  • 22. Singh, P and Kumar N. 1997. Effect of orography on precipitation in the western Himalayan region. J. Hydrol., 199, 183–206.
  • 23. Trenberth K.E and Hoar T.J. 1996. The 1990–1995 El Nino Southern Oscillation Event: Longest on Record. Geophys. Res. Lett., 23, 57–60.
  • 24. Trenberth K.E and Shea D. 1987. On the evolution of the Southern Oscillation. Mon. Wea. Rev., 115, 3078–30.
  • 25. Ubilava, D., Abdolrahimi, M., 2019. The El Niño impact on maize yields is amplified in lower income teleconnected countries. Environ. Res. Lett. 14, 054008. https://doi.org/10.1088/17489326/ab0cd0
  • 26. Zhang, L., Zhao, J., Kug, J., Geng, X., Xu, H., Luo, J., Park, J., Zhan, R. 2021. Pacific warming pattern diversity modulated by Indo‐Pacific sea surface temperature gradient. Geophysical Research Letters, 48. https://doi.org/10.1029/2021GL095516
  • 27. Zhou, W., Guan, K., Peng, B., Wang, Z., Fu, R., Li, B., Ainsworth, E., DeLucia, E., Zhao, L., Chen, Z. 2021. A generic risk assessment framework to evaluate historical and future climate-induced risk for rainfed corn and soybean yield in the U.S. Midwest. Weather and Climate Extremes, 33, 100369. https://doi.org/10.1016/J.WACE.2021.100369
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d387a03a-fb76-4e3e-a698-f066bacf1f02
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.