PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of dodecyl amine/dodium petroleum sulfonate mixed collector in quartz-feldspar flotation separation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It’s highly challenging to separate feldspar from quartz by flotation owing to their similar crystal structure and physicochemical properties. Using mixed collectors has become a promising method to improve the quartz-feldspar separation. In this study, mixed dodecyl amine (DDA) and sodium petroleum sulfonate (SPS) surfactants were used in the flotation separation of feldspar and quartz, and the adsorption mechanism of mixed collectors and depression mechanisms of two depressants were investigated through zeta potential, contact angle and Fourier transform infrared (FT-IR) spectra. When the pH reached 4.5, the separation of feldspar from quartz was more obvious. In the presence of DDA/SPS collector, the contact angle of feldspar was increased more obviously leading to enhance hydrophobicity. The infrared spectra revealed the interaction of collectors on feldspar surface involved physical and chemical adsorption, whereas the adsorption of collector on quartz was only physical interactions. The use of sodium hexametaphosphate resulted in a significantly enhanced separation performance. The weaker physical adsorption of mixed collector on quartz can be destroyed by sodium hexametaphosphate. This study is beneficial for understanding the collect mechanisms of mixed cationic-anionic surfactants on quartz and feldspar minerals, and promotes the development of advanced feldspar separation techniques.
Słowa kluczowe
Rocznik
Strony
art. no. 185553
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • Yunnan Gold & Mineral Group Co., Ltd.
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan 430070, China
autor
  • School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
Bibliografia
  • DING Z., LI J., YUAN J.Q., YU A.M., WEN S.M., BAI S.J., 2023. Insights into the influence of calcium ions on the adsorption behavior of sodium oleate and its response to flotation of quartz: FT-IR, XPS and AMF studies. Minerals Engineering, 204: 108437.
  • SHEN L F., SUN N., XU R., SUN W., WANG L., 2023. Adsorption mechanisms of activated surface of quartz and feldspar with mixed NaOL/DDA. Sep Purif Technol, 314: 123501.
  • ZHANG Y., HU Y.H., SUN N., LIU R.Q., WANG Z., WANG L., SUN W., 2018. Systematic review of feldspar beneficiation and its comprehensive application. Minerals Engineering, 128: 141-152.
  • MONTIEL-ANAYA J.A., FRANCO V., 2019. FORC study of the ferromagnetic impurities in Na and K feldspars of "El Realejo" mine. AIP Advances, 2019, 9(3): 35-38.
  • LIU H.G., LIN W.X., HONG M.H., 2021. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications. Light: Science and Applications, 10(1): 162.
  • SUN N., WANG G.D., GE P., SUN W., XU L.H., TAGN H.H., WANG L., 2023. Selective flotation of quartz from feldspar using hydroxypropyl starch as depressant. Minerals Engineering, 195: 108022.
  • XU L., JIAO F., JIA W., PAN Z.C., HU C.Q., QIN W.Q., 2020. Selective flotation separation of spodumene from feldspar using mixed anionic/nonionic collector. Colloids & Surfaces A: Phys. Eng. Asp, 594: 124605.
  • LARSEN E, KLEIV R.A., 2016. Flotation of quartz from quartz-feldspar mixtures by the HF method. Minerals Engineering, 98: 49-51.
  • PERRY D.L., TSAO L, GAUGLER K.A., 1983. Surface study of HF- and HF H2SO4-treated feldspar using Auger electron spectroscopy. Geochimica et Cosmochimica Acta, 47(7): 1289–1291.
  • HEYES G.W., ALLAN G.C., BRUCKARD W.J., SPARROW, G.J., 2013. Review of flotation of feldspar. Mineral Processing and Extractive Metallurgy, 121(2): 72–78.
  • SHU K., XU L., WU H., TAGN Z., LUO L.P., YAGN J., XU Y.B., FENG B., 2020. Selective flotation separation of spodumene from feldspar using sodium alginate as an organic depressant. Sep Purif Technol, 248: 117122.
  • KOU J., XU S., SUN T., SUN C., GUO Y., WANG C., 2016. A study of sodium oleate adsorption on Ca2+ activated quartz surface using quartz crystal microbalance with dissipation. International Journal of Mineral Processing, 154: 24–34.
  • WEN C., HONG C.J., LUO L.Q., 2003. Flotation Separation of Quartz from Feldspar under Hydrofluoric Acid-free and Less Sulfuric Acid Conditions. Mining and Metallurgical Engineering, 23(3): 35-37.
  • LIU Y., ZHANG K., 1993. Adsorption of sodium oleate and dodecyl amine hydrochloride on feldspar and quartz. Mining and Metallurgical Engineering, 13(2): 27-30.
  • BAI J.M., FAN W.Y., NAN G.Z., LI S.P., YU B.S., 2010. Influence of Interaction Between Heavy Oil Components and Petroleum Sulfonate on the Oil–Water Interfacial Tension. Journal of Dispersion Science & Technology, 31(4): 551-556.
  • ZHU H.L., DENG H.B., CHEN C., 2015. Flotation separation of andalusite from quartz using sodium petroleum sulfonate as collector. Transactions of Nonferrous Metals Society of China, 25(4): 1279-1285.
  • FENG Q., WEN S., ZHAO W., CHEN Y., 2018. Effect of calcium ions on adsorption of sodium oleate onto cassiterite and quartz surfaces and implications for their flotation separation. Sep Purif Technol, 200: 300–306.
  • LIU C.F., MIN F.F., LIU L.Y., CHENG J., DU J., 2018. Mechanism of hydrolysable metal ions effect on the zeta potential of fine quartz particles. Journal of Dispersion Science and Technology, 39 (2), 298–304.
  • WANG J.Y., XIE L., LU Q.Y., WANG X.G., WANG J.M., ZENG H.B., 2020. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite. Journal of colloid and interface science, 570: 350–361.
  • CHEN Z.J., REN Z.J., GAO H.M., ZHENG R.J., JIN Y.L., NIU G.G., 2019. Flotation studies of fluorite and barite with sodium petroleum sulfonate and sodium hexametaphosphate. Journal of Materials Research and Technology, 8 (1), 1267–1273.
  • RAMIREZ A., ROJAS A., GUTIERREZ L., LASKOWSKI, J.S., 2018. Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater. Minerals Engineering, 125: 10–14.
  • GAN W., CROZIER B., LIU Q., 2009. Effect of citric acid on inhibiting hexadecane–quartz coagulation in aqueous solutions containing Ca2+, Mg2+ and Fe3+ ions. International Journal of Mineral Processing, 92 (1–2): 84–91.
  • MYERS D., 1999. Surfaces, interfaces, and colloids - principles and applications. New Yorks: JohnWiley&Sons, Inc, 415-447.
  • KANGAL O., BULUT G., YEŞILYURT Z, GUVEN, O., BURAT, F., 2017. An Alternative Source for Ceramics and Glass Raw Materials: Augen-Gneiss. Minerals, 7(5): 70.
  • TSUYOSHI H., YUKI A., MOHSEN F., NAOKO O., KEIKO S., TAKEHIKO T., KATSUMI D., 2011. Effect of microorganisms on flocculation of quartz. International Journal of Mineral Processing, 102: 107-111.
  • ABA KA-WOOD G., ADDAI-MENSAH J., SKINNER W., 2016. Physicochemical Characterization of Monazite, Hematite and Quartz Minerals for Flotation. 4th Ummat Biennial International Mining and Mineral Conference.
  • Kursun I., 2010. Determination of flocculation and adsorption desorption characteristics of Na-feldspar concentrate in the presence of different polymers, Physicochemical Problems of Mineral Processing, 23: 127-142.
  • LIU J., CHEN W.Y., HAN Y.X., YUAN H.Q., 2010. Study on Flotation Mechanism of Separation of Potassium Feldspar from Quartz with Anion and Cation Mixed Collector. Advanced Materials Research, 826: 106-113.
  • PANANDIKER R.K., SMITH S.D., MCCHAIN R.J., BARRERA, C.A., 2015. Branched blocky cationic organopolysiloxane.
  • LU R.C., CAO A.N., LAI L.H., ZHU, B.Y., ZHAO, G.X., XIAO J.X., 2007. Interaction between bovine serum albumin and equimolarly mixed cationic-anionic surfactants decyltriethylammonium bromide-sodium decyl sulfonate. Colloids Surf B Bio interfaces, 54(1): 20-24.
  • VIDYADHAR A., RAO K.H., 2007. Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system. Journal of Colloid and Interface Science, 2007, 306(2): 195-204.
  • HUO P.P., OKUNO I., 1985. Alkyl Chain Length and the Spectral Characteristics of p-Aminophenones. Applied Spectroscopy, 39(2): 339-342.
  • KUMAR B., SMITA K., CUMBAL L., ANGULO Y., 2015. Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. Journal of Molecular Liquids, 211: 476-480.
  • YUSAN S, KORZHYNBAYEVA K, AYTAS S., 2014. Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content. Journal of Alloys & Compounds, 608: 8-13.
  • FAN C.H., ZHANG Y.C., WANG J.H., 2013. Study on the Co-Adsorption Mechanism of Pb and Chlorpyrifos on Arid Loess in Northwestern China. Spectroscopy & Spectral Analysis, 33(8): 2137-2142.
  • SCHARGE T., WASSERMANN T.N., SUHM M.A., 2008. Weak Hydrogen Bonds Make a Difference: Dimers of Jet-Cooled Halogenated Ethanols. International Journal of Research in Physical Chemistry & Chemical Physics, 222(8-9): 1407-1452.
  • IBRAHIM I, HUSSIN H, AZIZLI K., 2014. A study on the interaction of feldspar and quartz with mixed anionic/cationic collector. Malaysian Journal of Fundamental and Applied Sciences, 7(2): 101-107.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3875683-17d5-4b66-802b-0dae0dbbbc59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.