PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the effect of honeycomb grid cell size on structural performance of stiffened syntactic foam core sandwich composite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Syntactic foam core composite sandwich structures are potential structural panels because of their high specific properties. The chief ingredient of a syntactic foam is dry fly ash cenospheres, which play a vital role in the mechanical properties of syntactic foam in relation to its volume fraction. In the present investigation, the concept of confining foam in the cells of a honeycomb grid structure was adopted to improve the mechanical properties of composite sandwich structural panels. Experimental investigations were carried out to evaluate the thermal stability and mechanical properties of a honeycomb grid stiffened syntactic foam core composite sandwich as per ASTM standards. The results of the investigations reveal that the syntactic foam confined in the hexagonal cells of the honeycomb grid structure considerably improves the mechanical properties by 20% to 180% than compared with syntactic foam core sandwich composites without a honeycomb grid structure. The cell walls of the honeycomb grid structure hinder the propagation of cracks under loading conditions. The damage tolerance capacity is attributed to the cell size of the honeycomb structure. Interfacial bonding of the constituent materials leads to improved mechanical properties.
Rocznik
Strony
202--208
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, J.N.N. College of Engineering, Shivamogga-577204, Karnataka, India
  • Management Studies, Welcomgroup Graduate School of Hotel Administration, Manipal Academy of Higher Education, Manipal, Karnataka, India
Bibliografia
  • 1. Daniel I.M., Ishai O., Engineering Mechanics of Composite Materials., 2nd ed., Oxford University Press, 2007, ISBN 978-0-19-515097-1.
  • 2. Ness D.S.R., Whiley D.A., Advanced composites for high performance marine craft, Marine Structure 1990, 3, 111-131, DOI: 10.1016/0951-8339(90)90007-E.
  • 3. Kimpara I., Use of advanced composite materials in marine vehicles, Marine Structure 1991, 4, 117-127, DOI: 10.1016/ 0951-8339(91)90016-5.
  • 4. Chalmers D.W., The potential for the use of composite materials in marine structures, Marine Structure 1994, 7, 441-456, DOI: 10.1016/0951-8339(94)90034-5.
  • 5. Shah Khan M.Z., Simpson G., Gellert E.P., Resistance of glass-fibre reinforced polymer composites to increasing compressive strain rates and loading rates, Composite Part A: Applied Science and Manufacturing 2000, 31, 57-67, DOI: 10.1016/S1359-835X(99)00051-2.
  • 6. Mouritz A.P., Gardiner C.P., Compression properties of fire-damaged polymer sandwich composites, Composite Part A: Applied Science and Manufacturing 2002, 33, 609-620, DOI: 10.1016/S1359-835X(02)00022-2.
  • 7. Kootsookos A., Mouritz A.P., Seawater durability of glassand carbon-polymer composites, Composite Science and Technology 2004, 64, 1503-1511, DOI: 10.1016/ j.compscitech.2003.10.019.
  • 8. Shivakumar K.N., Swaminathan G., Sharpe M., Carbon/ vinyl ester composites for enhanced performance in marine applications, Journal of Reinforced and Plastics and Composites 2006, 25, 1101-1116, DOI: 10.1177/073168440606519
  • 9. Aldajah S., Alawsi G., Rahmaan S.A., Impact of sea and tap water exposure on the durability of GFRP laminates, Materials and Design 2009, 30, 1835-1840, DOI: 10.1016/j.matdes.2008.07.044.
  • 10. Motley M.R., Liu Z., Young Y.L., Utilizing fluid-structure interactions to improve energy efficiency of composite marine propellers in spatially varying wake., Composite Structures 2009, 90, 304-313, DOI: 10.1016/j.compstruct. 2009.03.011.
  • 11. Osnes H., McGeorge D., Experimental and analytical strength analysis of double-lap joints for marine applications, Composite Part B: Engineering 2009, 40, 1, 29-40, DOI: 10.1016/j.compositesb.2008.07.002.
  • 12. He X.D., Hong Y., Wang R.G., Hydro elastic optimization of a composite marine propeller in a non-uniform wake, Ocean Engineering 2012, 39, 14-23, DOI: 10.1016/j.oceaneng.2011.10.007.
  • 13. Nader J., Dagher H.J., Lopez-Anido R.A., El Chiti F., Fayad G., Thomson L., Probabilistic finite element analysis of modified ASTM D3039 tension test for marine grade polymer matrix composites, Journal of Reinforced Plastics and Composites 2008, 27, 583-597, DOI: 10.1177/073168440 70799152008.
  • 14. He S., Carolan D., Fergusson A., Taylor A.C., Investigating the transfer of toughness from rubber modified bulk epoxy polymers to syntactic foams, Composite Part B: Engineering 2022, 245, 110209, DOI: 10.1016/j.compositesb.2022.110209.
  • 15. Jin Q., Wang J., Chen J., Bao F., Axial compressive behavior and energy absorption of syntactic foam-filled GFRP tubes with lattice frame reinforcement. Composite Structures 2022, 299, 116080, DOI: 10.1016/j.compstruct. 2022.116080.
  • 16. Brandtner-Hafner M., Holistic structural analysis of polymeric foam systems, Construction and Building Materials 2023, 368, 130428, DOI: 10.1016/j.conbuildmat.2023.130428.
  • 17. Manu J., Grid stiffened shape memory polymer composite structures, Encyclopedia of Materials: Plastics and Polymers 2022, 2, 180-194, DOI: 10.1016/B978-0-12-820352-1.00203-0.
  • 18. Fallah A.S., Johnson H.E., Louca L.A., Experimental and numerical investigation of buckling resistance of marine composite panels, Journal of Composite Materials 2010, 45, 907-922, DOI: 10.1177/0021998310377942.
  • 19. Singh A.K., Davidson B.D., Effects of temperature, seawater and impact on the strength, stiffness, and life of sandwich composites, Journal of Reinforced Plastics and Composites 2010, 30, 269-277, DOI: 10.1177/07316844 10393053.
  • 20. Manujesh B.J., Vijayalakshmi R., Sham Aan M.P., Moisture absorption and mechanical degradation studies of polyurethane foam cored E-glass-reinforced vinyl-ester sandwich composites, Journal of Reinforced Plastics and Composites 2014, 33, 479-492, DOI: 10.1177/0731684413503720.
  • 21. Mitra N., Marine Sandwich Structures, Wiley Encyclopaedia of Composites, 2nd ed., John Wiley and Sons Inc, 2012, DOI: 10.1002/9781118097298.weoc241.
  • 22. Zhou G., Hill M.D., Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels, Journal of Sandwich Structures and Materials 2009, 11, 329-356, DOI: 10.1177/ 1099636209105704.
  • 23. Kim K.S., Chin I-J., Curing of nomex/phenolic and kraft/phenolic honeycombs, Korea Polymer Journal 1995, 3, 35-40.
  • 24. Space simulation; aerospace and aircraft; composite materials, Annual Book of American Society for Testing and Materials Standard, West Conshohocken, Pa, 15.03.2007.
  • 25. ASTM Standard D638, Standard test method for tensile properties of plastics, ASTM D638-91, West Conshohocken, Pa, ASTM International 1991.
  • 26. Amith Kumar S.J., Ajith Kumar S.J., Nagaraja B.K., Thermal stability and flammability characteristics of phenolic syntactic-foam core sandwich composites, Journal of Sandwich Structures and Materials 2020, DOI: 10.1177/ 1099636220926661.
  • 27. Heimbs S., Schmeer S., Middendorf P., Maier M., Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures, Composite Science and Technology 2007, 67, 2827-2837, DOI: 10.1016/j.compscitech. 2007.01.027.
  • 28. Amith Kumar S.J., Ajith Kumar S.J., Low-velocity impact damage and energy absorption characteristics of stiffened syntactic-foam core sandwich composites., Construction and Building Materials 2020, 246, 118412, DOI: 10.1016/j. conbuildmat.2020.118412.
  • 29. Amith Kumar S.J., Sabeel Ahmed K., Compression behavior and energy absorption capacity of stiffened syntacticfoam core sandwich composites, Journal of Reinforced Plastics and Composites 2013, 32,1370-1379, DOI: 10.1177/0731684413492867.
  • 30. Amith Kumar S.J., Sabeel Ahmed K., Flexural behavior of stiffened syntactic-foam core sandwich composites, Journal of Sandwich Structures and Materials 2014, 16, 195-209, DOI: 10.1177/1099636213512498.
  • 31. Manalo A.C., Aravinthan T., Karunasena W., In-plane shear behaviour of fibre composite sandwich beams using asymmetrical beam shear test, Construction and Building Materials 2010, 24, 1952-1960, DOI: 10.1016/j.conbuildmat. 2010.04.005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d3845bed-a08e-4530-9b29-af839d7eff9c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.