PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computer aided design in Selective Laser Sintering (SLS) - application in medicine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of this paper is presenting a computer technique (AutoFab software) used for modeling and design elements made from selective laser sintering (SLS) of metal powders belonging to the additive manufacturing (AM) technology. Design/methodology/approach: The following article presents the opportunities which are inherent to the software (AutoFab) for three dimentional computer graphics design-assist of the technology coupled with SLS. Findings: With the software, in which we designed the object of interest to us the shape and porosity by controlling the pore size, wall thickness, shape, internal and external structure, we can produce any item of characterized and the interesting properties. Practical implications: The combination of 3D modeling with additive manufacturing technologies provides ample opportunities in various industries. This permits reduce the time of designing the item until its market. This makes the choice of the path of production becomes more competitive in comparison to traditional methods of manufacture. Originality/value: The wide interests in this technology (3D design with manufacturing) offers great possibilities in medicine giving, among other things the ability to design and manufacture of the implant, the size and shape are customized to the needs of the individual patient. So the technology used makes it easier for surgeons and improve patient comfort.
Rocznik
Strony
66--75
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice
Bibliografia
  • [1] L. Lu, J. Fuh, Y. Wong, Laser induseed materials and processes for rapid prototyping, Kluwer Publishers, Dordrecht, 2001.
  • [2] S. Kumar, Selective Laser Sintering: A qualitative and objective approach, Modeling and Characterization (2003) 43-47.
  • [3] M. Chuchro, J. Czekaj, A. Ruszaj, Preparation of functional models and tools by selective laser sintering (SLS, DMLS), Mechanic 12 (2008) 1064 (in Polish).
  • [4] M. Klimek, The use of SLS technology in making permanent dental restorations, Prosthetics 12 (2012) 47-55 (in Polish).
  • [5] L.A. Dobrzański, G. Matula, Fundamentals of powder metallurgy and sintered materials, Open Access Library 8/4 (2012) 1-156 (in Polish).
  • [6] J.P. Kruth, P. Mercelis, J. Van Vaerenbergh, Binding mechanisms in selective laser sinteringand selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36.
  • [7] R. Housholder, Molding process, US Patent 4247508, 1979.
  • [8] M. Miecielica, Rapid Prototyping Technologies, PM 2 (2010) 39-45 (in Polish).
  • [9] S. Das, M. Wohlert, J.J. Beaman, D.L. Bourell, Producing Metal Parts with Selective Laser Sintering/Hot Isostatic Pressing, Journal of Management,50/12 (1998) 17-20.
  • [10] G. Matula, Gradient surface layers of cermet utilities formed and sintered without pressure, Open Access Library 7/13 (2012) 1-144 (in Polish).
  • [11] L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of Ti-6Al-4V, Materials and Design 31 (2010) 3982-3988.
  • [12] L. Ciocca, M. Fantini, F. De Crescenzio, G. Corinaldesi, R. Scott, Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches, Medical and Biological Engineering and Computing 49 (2011) 1347-1352.
  • [13] A. Mazzoli, Selective laser sintering in biomedical engineering, Medical and Biological Engineering and Computing 51 (2013) 245-256.
  • [14] A. Bandyopadhyay, F. Espana, V.K. Balla, S. Bose, Y. Ohgami, N.M. Davies, Influence of porosity on mechanical properties and in vivo responseof Ti6Al4V implants, Acta Biomaterialia 6 (2010) 1640-1648.
  • [15] S. Van Bael, Y.C. Chai, S. Truscello, M. Moesen, at all; The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds, Acta Biomateralia 8/7 (2012) 2824-2834.
  • [16] I. Shishkovsky, V. Scherbakov, Selective laser sintering of biopolymers with micro and nano ceramic additives for medicine, Physics Procedia 39 (2012) 491-499.
  • [17] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Selective laser sintering method of manufacturing front electrode of silicon solar cell, Journal of Achievements in Materials and Manufacturing Engineering 42/1-2 (2010) 111-119.
  • [18] L.A. Dobrzański, A. Drygał, M. Musztyfaga, P. Panek, Comparison of the structure and electrical properties of the front electrodes of solar cells fired in a furnace belt and selective laser sintered, Electronics - products, technologies, applications 4 (2011) 50-52 (in Polish).
  • [19] K. Chojnowska, The virtual model supported by 3D printing, Design News Poland, 2008 (in Polish).
  • [20] S.H. Choi, S. Samaved, Modeling and optimisation of Rapid Prototyping, Computers in Industry 47 (2002) 39-53.
  • [21] Marcarm Enginnering GmBH, Software documentation Version 1.2, 2009.
  • [22] E. Yasa, J.P. Kruth, Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser remelting, Procedia Engineering 19 (2011) 389-395.
  • [23] F. Xiea, X. Heb, S. Caoa, X. Qua, Structural and mechanical characteristics of porous 316L stainless steelfabricated by indirect selective laser sintering, Journal of Materials Processing Technology 213 (2013) 838-843
  • [24] A. Fukuda, M. Takemoto, T. Saito, S. Fujibayashi, et al., Osteoinduction of porous Ti implants with a channel structure fabricatedby selective laser melting, Acta Biomaterialia 7 (2011) 2327-2336.
  • [25] I.V. Shishkovsky, L.T. Volova, M.V. Kuznetsov, Yu.G. Morozo and I.P. Parkin, Porous biocompatible implants and tissue scaffolds synthesized by selectivelaser sintering from Ti and NiTi, Journal of Materials Chemistry 18 (2008) 1309-1317
  • [26] X. Wang, Y. Li, J. Xiong, P.D. Hodgson, C. Wen, Porous TiNbZr alloy scaffolds for biomedical applications, Acta Biomaterialia 5 (2009) 3616-3624
  • [27] K.L. Ackermann, B. Al-Nawas, A. Behneke, N. Behneke et al., Implantologie, Urban and Fischer, München, 2004.
  • [28] B. Duan, M. Wang, W.Y. Zhou, W.L. Cheung, L.Z. Yang, W.W. Lu, Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering, Acta Biomaterialia 6 (2010) 4495-4505.
  • [29] R. Comesańa, F. Lusquińos, J. del Val, M. López-Álvarez, et all, Three-dimensional bioactive glass implants fabricated by rapid prototypingbased on CO2 laser cladding, Acta Biomaterialia 7 (2011) 3476-3487.
  • [30] Material Safety Data Sheet of Stainless Steel 316L - 1.4404, Renishaw.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d382ad69-243d-4b97-8e89-3fb69d505a4e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.