PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methods of weather variables introduction into short-term electric load forecasting models - a review

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Przegląd metod uwzględniania zmiennych pogodowych w modelach prognozowania krótkoterminowego
Języki publikacji
EN
Abstrakty
EN
Short-term load forecasting (STLF) is a problem of noticeable significance for operation of power systems. Wide range of methodologies for STLF is given in the literature – univariate models as well as multivariate ones (mostly extended with weather variables). This paper is an attempt to categorize various approaches of introducing exogenous variables into models. Different classifications of this aspect are created and described in an effort to demonstrate the problem from various perspectives. Finally, the advantages and disadvantages of reviewed solutions are discussed.
PL
Krótkoterminowe prognozowanie obciążeń jest istotnym elementem działania systemów elektroenergetycznych. W literaturze opisane zostało szerokie spektrum metod – modele zarówno jedno- jak i wielowymiarowe (najczęściej używające zmiennych pogodowych). W pracy podjęto próbę przeglądu metod prognozowania pod kątem sposobu w jaki korzystają one ze zmiennych egzogenicznych. Przedstawiono klasyfikacje dla tych metod opisujące problem z różnych perspektyw.
Rocznik
Strony
70--73
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
  • student, Czestochowa University of Technology, al. Armii Krajowej 17, 42-200 Czestochowa, Poland
Bibliografia
  • [1] Gross G., Galiana F.D., Short-Term Load Forecasting, Proceedings of the IEEE, 75 (1987), no. 12, 1558 - 1573
  • [2] Kyriakides E., Polycarpou M., Short Term Electric Load Forecasting: A Tutorial, Studies in Computational Intelligence, 35 (2007), 391-418
  • [3] Popławski et al., Forecasting Methods for Balancing Energy Market in Poland, International Journal of Electrical Power and Energy Systems, 65 (2015), 94-101
  • [4] Munoz et al., Short-term Forecasting in Power Systems: A Guided Tour, Handbook of Power Systems II, Energy Systems, (2010), 129-160
  • [5] Hippert et al., Neural Networks for Short-Term Load Forecasting: A Review and Evaluation, IEEE Transactions on Power Systems, 16 (2001), no.1, 44 - 55
  • [6] Hobby J.D., Tucci G.H.: Analysis of the Residential, Commercial and Industrial Electricity Consumption, IEEE PES Innovative Smart Grid Technologies Asia (ISGT), 1 (2011), 1-7
  • [7] Bessec M., Fouquau J., The non-linear link between electricity consumption and temperature: a threshold panel approach, Energy Economics, 30 (2008), no. 5, 2705–2721
  • [8] Henley A., Peirson J., Non-linearities in Electricity Demand and Temperature: Parametric versus Non-parametric Methods, Oxford Bulletin for Economics and Statistics, 59 (1997), 1149– 1162
  • [9] Rahman S., Formulation and Analysis of a Rule-based Short- Term Load Forecasting Algorithm, Proceedings of the IEEE, 78 (1990), No.5, 805 - 816
  • [10] Hor et al., Analyzing the Impact of Weather Variables on Monthly Electricity Demand, IEEE Transactions on Power Systems, 20 (2005), No.4, 2078 - 2085
  • [11] Rahman S., Hazim O., A Generalized Knowledge-Based Short-Term Load-Forecasting Technique, IEEE Transactions on power systems, 8 (1993), no. 2, 508 - 514
  • [12] Chow T.W.S., Leung C.T., Neural Network based Short- Term Load Forecasting Using Weather Compensation, IEEE Transactions on Power Systems, 11 (1996), No.4, 1736 - 1742
  • [13] Sailor D.J., Munoz J.R., Sensitivity of electricity and naturalgas consumption to climate in the U.S.A. - methodology and results for eight states, Energy, 22 (1997), no.10, 987–998
  • [14] Fan S., Hyndman R., Short-term load forecasting based on a semi-parametric additive model, IEEE Transactions on Power Systems, 27 (2012), No.1, 134 – 141
  • [15] Charytoniuk et al., Nonparametric Regression Based Short- Term Load Forecasting, IEEE Transactions on Power Systems, 13 (1998), No. 3, 725 - 730
  • [16] Taylor J.W., Buizza R., Using Weather Ensemble Predictions in Electricity Demand Forecasting, International Journal of Forecasting, 19 (2003), 57 – 70
  • [17] Hyde O., Hodnett P.F., An Adaptable Automated Procedure for Short-Term Electricity Load Forecasting, IEEE Transactions on Power Systems, 12 (1997), No.1, 84 - 94
  • [18] Khotanzad et al., ANNSTLF – A Neural-Network-Based Electric Load Forecasting System. IEEE Transactions on Neural Networks, 8 (1997), No.4, 835 - 846
  • [19] Friedrich L., Afshari A., Short-term forecasting of the Abu Dhabi electricity load using multiple weather variables, Energy Procedia, 75 (2015), 3014 – 3026
  • [20] Cancelo et al., Forecasting the electricity load from one day to one week ahead for the Spanish system operator, International Journal of Forecasting, 24 (2008), no.4, 588–602
  • [21] Quayle R.G., Diaz H.F, Heating Degree Day Data Applied to Residential Heating Energy Consumption, Journal of Applied Meteorology, 19 (1980), 241–246
  • [22] Pardo et al., Temperature and seasonality influences on Spanish electricity load, Energy Economics, 24 (2002), 57-70
  • [23] Moral-Carcedo J., Vicens -Otero J., Modelling the nonlinear response of Spanish electricity demand to temperature variations, Energy Economics, 27 (2005), 477-494
  • [24] Elias et al., Electricity load forecasting based on weather variables and seasonalities: A neural network approach, 8th International Conference on Service Systems and Service Management (ICSSSM), 1 (2011), 1-6
  • [25] http://www.nws.noaa.gov/om/heat/heat_index.shtml
  • [26] Chu et al., Multiregion Short-Term Load Forecasting in Consideration of HI and Load/Weather Diversity, IEEE Transactions on Industry Applications, 47 (2011), 1, 232-237
  • [27] Steadman R.G., A Universal Scale of Apparent Temperature, Journal of Climate and Applied Meteorology, 23 (1984), 1674– 1687
  • [28] Masterton J.M., Richardson F.A., Humidex, a Method of Quantifying Human Discomfort Due to Excessive Heat and Humidity, Environment Canada, Atmospheric Environment Service, 1979, 1-79
  • [29] Chen et al., Short-Term Load Forecasting: Similar Day-Based Wavelet Neural Networks, IEEE Transactions on Power Systems, 25 (2010), No. 1, 322 - 330
  • [30] Mao et al., Application of BP Network to Short-term Power Load Forecasting Considering Weather Factor, 2011 International Conference on Electric Information and Control Engineering (ICEICE), 1 (2011), 172-175
  • [31] Sailor D.J., Relating residential and commercial sector electricity loads to climate - evaluating state level sensitivities and vulnerabilities, Energy, 26 (2001), no.7, 645–657
  • [32] Osczevski R., Bluestein M.: The new wind chill equivalent temperature chart, Bulletin of American Meteorological Society, 10 (2005), 1453-1458
  • [33] Ruzic et al., Weather Sensitive Method for Short Term Load Forecasting in Electric Power Utility of Serbia, IEEE Transactions on Power Systems, 18 (2003), No.4, 1581 - 1586
  • [34] Kandil et al., An efficient approach to short term load forecasting using artificial neural networks, Electrical Power and Energy Systems, 28 (2006), 525-530
  • [35] Chen et al:, Weather Sensitive Short-Term Load Forecasting Using Knowledge-Based ARX Models, IEEE Power Engineering Society General Meeting, 1 (2005), 190-196
  • [36] Amjady N., Short-Term Hourly Load Forecasting Using Time- Series Modeling with Peak Load Estimation, IEEE Transactions on Power Systems, 16 (2001), No.3, 798 - 805
  • [37] Fan S., Chen L., Short-Term Load Forecasting Based on an Adaptive Hybrid Method, IEEE Transactions on Power Systems, 21 (2006), No.1, 392 - 401
  • [38] Senjyu et al., One-Hour-Ahead Load Forecasting Using Neural Network, IEEE Transactions on Power Systems, 17 (2002), No.1, 113-118
  • [39] Senjyu et al., Next Day Load Curve Forecasting Using Hybrid Correction Method, IEEE Transactions on Power Systems, 20 (2005), No.1, 102-109
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d37e37e7-2756-4109-8521-5790954e7dc0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.