PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of building damage using ARMAX model: a parametric study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Structural Identification approach is used to identify and localize the existence of damage for a steel frame. The black box linear parametric model called Auto-Regressive Moving Average with eXternal input (ARMAX) was utilized for the construction of the Frequency Response Functions, based on simulation results. The Singular Value Decomposition method was adopted to identify how many significant eigenvalues exist and plot the Complex Mode Indicator Function for the complete frame. Three damage indices were adopted to evaluate the state of damage in the frame. The results indicated that the ARMAX is a robust scheme for structural damage detection.
Czasopismo
Rocznik
Strony
3--14
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil, Environmental and Natural Resources Engineering, Division of Structural and Construction Engineering, Luleå University of Technology, Luleå, Sweden
  • Lecturer at University of Mosul, College of Engineering, Department of Civil Engineering, Iraq
  • Department of Computer Science, Electrical and Space Engineering, Division of Systems and Interaction, Luleå University of Technology, Luleå, Sweden
Bibliografia
  • 1. Aktan A.E., Ellingwood B.R., Kehoe B. Performance based engineering of constructed systems 1. Journal of structural engineering, 133(3): 311-323, 2007.
  • 2. Alvin K.F., Robertson A.N., Reich G.W., Park K.C. Structural system identification: from reality to models. Computers & structures, 81(12):1149-1176, 2003.
  • 3. Andersen P. Identification of civil engineering structures using vector ARMA models. PhD thesis, Aalborg University, Denmark, 1997.
  • 4. Astrom K. J., Eykhoff P. System identification a survey. Automatica, 7(2):123-162, 1971.
  • 5. Avitabile P. Can you explain the complex mode indicator function (cmif) again? what are these crossover frequencies? Experimental Techniques, 37(2):3-5,2013.
  • 6. Bodeux J.B., Golinval J.C. Application of armav models to the identification and damage detection of mechanical and civil engineering structures. Smart Materials and Structures, 10(3):479, 2001.
  • 7. Boller C., Chang F.K., Fujino Y.. Encyclopedia of structural health monitoring. John Wiley, 2009.
  • 8. Capecchi D., Vestroni F. Monitoring of structural systems by using frequency data. Earth- quake engineering & structural dynamics, 28(5):447-461, 1999.
  • 9. Catbas F.N., Brown D.L., Aktan A.E. Use of modal flexibility for damage detection and condition assessment: case studies and demonstrations on large structures. Journal of Structural Engineering, 132(11):1699-1712, 2006.
  • 10. Catbas F.N., Kijewski-Correa T., Aktan A.E. Structural identification (st-id) of constructed facilities: Approaches, methods and technologies for effective practice of st-id. In Am Soc Civ Eng, 2011.
  • 11. Chopra A.K. Dynamics of structures, volume 3. Prentice Hall New Jersey, 1995.
  • 12. Chowdhury I., Dasgupta S.P. Computation of rayleigh damping coefficients for large systems. The Electronic Journal of Geotechnical Engineering, 8(0), 2003.
  • 13. da Silva S., Dias M. J., Lopes V. J., Brennan M. J. Structural damage detection by fuzzy clustering. Mechanical Systems and Signal Processing, 22(7):1636-1649, 2008.
  • 14. Dassault Systemes. Abaqus/cae users manual, version 6.12-1. Pawtucket (RI), 2012.
  • 15. De Silva C.W. Vibration: fundamentals and practice. CRC press, 2006.
  • 16. Doebling S.W., Farrar C.R., Prime M.B., Shevitz D.W. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. Technical report, Los Alamos National Lab., NM (United States), 1996.
  • 17. Fu Z.F., He J. Modal analysis. Butterworth-Heinemann, 2001.
  • 18. Hart G.C., Yao J.T.P. System identification in structural dynamics. Journal of the Engineering Mechanics Division, 103(6):1089-1104, 1977.
  • 19. Inc. Vibrant Technology. Integration and differentiation of frfs. Technical report, http://www.vibetech.com, 2006.
  • 20. Kampas G., Makris N. Modal identification of freeway overcrossings with soil-structure interaction: a case study. Structural Control and Health Monitoring, 20(3):304-319, 2013.
  • 21. Lee C.G., Yun C.B. Parameter identification of linear structural dynamic systems. Computers & structures, 40(6):1475-1487, 1991.
  • 22. Li H., Deng X., Dai H. Structural damage detection using the combination method of emd and wavelet analysis. Mechanical Systems and Signal Processing, 21(1):298-306, 2007.
  • 23. Liu S.C., Yao J.T.P. Structural identification concept. Journal of the Structural Division, 104 (12):1845-1858, 1978.
  • 24. Liu T,Y., Chiang W. L., Chen C. W., Hsu W. K., Lin . C. W., Chiou D. J., Huang P. C. Structural system identification for vibration bridges using the Hilbert-Huang transform. Journal of Vibration and Control, 18(13):1939-1956, 2012.
  • 25. Liu T.Y., Chiang W.L., Chen C.W., Hsu W.K., Lu L.C., Chu T.J. Identification and monitoring of bridge health from ambient vibration data. Journal of Vibration and Control, 17(4):589-603, 2011.
  • 26. Ljung L. System Identification Toolbox for Use with {MATLAB}. The MathWorks, Inc., 2012.
  • 27. Ljung L. System identification: theory for the user. Information and System Sciences Series. Prentice-Hall, Englewood Cliffs, New Jersey, 7632, 1987.
  • 28. Loh C.H., Weng J.H., Chen C.H., Lu K.C. System identification of midstory isolation building using both and Health Monitoring, 20(2):19-35, 2013.
  • 29. Minami Y., Yoshitomi S., Takewaki I. System identification of super high-rise buildings using limited vibration data during the 2011 tohoku (japan) earthquake. Structural Control and Health Monitoring, 20(11):1317-1338, 2013.
  • 30. Montalvao D., Maia N.M.M., Ribeiro A.M.R. A review of vibration-based structural health monitoring with special emphasis on composite materials. Shock and Vibration Digest, 38(4):295-326, 2006.
  • 31. Nagarajaiah S., Basu B. Output only modal identification and structural damage detection using time frequency & wavelet techniques. Earth-quake Engineering and Engineering Vibration, 8(4):583-605, 2009.
  • 32. Nakamura M., Masri S.F, Chassiakos A.G., Caughey T.K. A method for nonparametric damage detection through the use of neural networks. Earthquake engineering & structural dynamics, 27(9):997-1010, 1998.
  • 33. National Instruments Corporation. Selecting a model structure in the system identification process. Technical report, http://www.ni.com/whitepaper/4028/en/, 2010.
  • 34. Oates R. Armax for system identification. Nottingham University Lecture, 2011.
  • 35. Ohtori Y., Christenson R.E., Spencer B.F.Jr., Dyke S.J. Benchmark control problems for seismically excited nonlinear buildings. Journal of Engineering Mechanics, 130(4):366-385, 2004.
  • 36. Pan Q. System identification of constructed civil engineering structures and uncertainty. PhD thesis, Citeseer, 2007.
  • 37. Petsounis K.A., Fassois S.D. Parametric time-domain methods for the identification of vibrating structures a critical comparison and assessment. Mechanical Systems and Signal Processing, 15(6):1031-1060, 2001.
  • 38. Richardson M.H. Derivation of mass, stiffness and damping parameters from experimental modal data. Hewlett Packard Company, Santa Clara Division, 1977.
  • 39. Rytter A. Vibration Based Inspection of Civil Engineering Structures, 1993. PhD thesis, Ph. D. dissertation, 1993.
  • 40. Safak E. Identification of linear structures using discretetime filters. Journal of Structural Engineering, 117(10):3064-3085, 1991.
  • 41. Saito T., Yokota H.. Evaluation of dynamic characteristics of high-rise buildings using system identification techniques. Journal of wind engineering and industrial aerodynamics, 59(2):299-307, 1996.
  • 42. Soderstrom T., Stoica P. System identification. Prentice-Hall, Inc., 1988.
  • 43. Sohn H., Farrar C.R., Hemez F.M., Shunk D.D., Stinemates D.W., Nadler B.R., Czarnecki J.J. A review of structural health monitoring literature: 1996-2001. Los Alamos National Laboratory Los Alamos, NM, 2004.
  • 44. Tang J.P., Chiou D.J., Chen C.W., Chiang W.L., Hsu W.K., Chen C.Y., Liu T.Y. A case study of damage detection in benchmark buildings using a hilbert-huang transform-based method. Journal of Vibration and Control, 17(4):623-636, 2011.
  • 45. Thu H.H., Mita A. Assessment and evaluation of damage detection method based on modal frequency changes. In SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring, pages 86923M-86923M. International Society for Optics and Photonics, 2013.
  • 46. Xia Y. System Identification and Damage Detection ofNonlinear Structures, 2011. PhD thesis, University of California, Irvine, 2011.
  • 47. Xia Y., Hao H., Brownjohn J.M.W., Xia P.Q. Damage identification of structures with uncertain frequency and mode shape data. Earthquake engineering & structural dynamics, 31(5):1053-1066, 2002.
  • 48. Xing Z., Mita A. A substructure approach to local damage detection of shear structure. Structural Control and Health Monitoring, 19(2):309-318, 2012.
  • 49. Yang Y.B., Chen C.T., Chang K.C. On applicability of Hilbert-huang transform for vibration analysis of a twomember truss. The IES Journal Part A: Civil & Structural Engineering, 5(2):67-78, 2012.
  • 50. Zanaz A., Yotte S., Fouchal F., Chateauneuf A.. Efficient masonry vault inspection by monte carlo simulations: Case of hidden defect. Case Studies in Structural Engineering, 5:1-12, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d37a3c4b-fe5a-424d-bfa1-fb35034b9901
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.