Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1--25
Opis fizyczny
Bibliogr. 58 poz.
Twórcy
autor
- Instytut Matematyki Uniwersytet Warszawski ul. Banacha 2, 02-097 Warszawa
Bibliografia
- [1] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, Pakiet PARI/GP. ftp://megrez.math.u-bordeaux.fr/pub/pari/.
- [2] B. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves, I, J. Reine Angew. Math. 212 (1963) 7-25.
- [3] B. Birch, H. P. F. Swinnerton-Dyer, Notes on elliptic curves, II, J. Reine Angew. Math., 218 (1965) 79-108.
- [4] R. Bölling, Die Ordnung der Schafarewitsch-Tate Gruppe kann beliebig gross werden, Math. Nachr., 67 (1975) 157-179.
- [5] Z. I. Borewicz, I. R. Szafarewicz, Teoria Liczb (ros.), Moskwa, Nauka, 1964.
- [6] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves: Wild3-adic exercises, J. Amer. Math. Soc., 14 (2001), no. 4, 843-939.
- [7] A. Вrumer, O. McGuinness, The behaviour of the Mordell-Weil group of elliptic curves, Bull. Amer. M ath. Soc., 2 3 (1990) 375-382.
- [8] J. P. Buhler, B. H. Gross, D. B. Zagier, On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank 3, Math. Comp., 44 (1985), no. 170, 473-481.
- [9] J. W. S. Cassels, Arithmetic on curves of genus 1, (V I). The Tate-Šafarevič group can be arbitrarily large, J. Reine Angew. M ath., 214 / 5 (1964) 6 5-70.
- [10] J. W. S. Cassels, Arithmetic on curves of genus 1, (V III). On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. M ath., 217 (1965) 180-199.
- [11] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 4 1 (1966) 193-291.
- [12] J. E. Cremona, The analytic order of Ш for modular elliptic curves, J. Théor. Nombres, Bordeaux, 5 (1993), no. 1, 179-184.
- [13] J. E. Cremona, Algorithms for modular elliptic curves, 2. wyd., Cambridge Univ. Press, Cambridge, 1997 http://www.maths.nott.ac.uk/personal/jec/packages.html
- [14] J. E. Cremona, B. Mazur, Visualizing elements of the Shafarevich-Tate group, Exper. Math., 9 (2000), no. 1, 13-28.
- [15] A. Dąbrowski, M. Wieczorek, Arithmetic on certain families of elliptic curves, Bull. Austral. Math. Soc., 61 (2000) 319-327.
- [16] F. Keqin, Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture, Acta Arith., 7 5 (1996), no. 1, 71-83.
- [17] S. Fermigier, Une courbe elliptique définie sur Q de rang ≥ 22, Acta Arith., 82 (1997), no. 4, 359-363.
- [18] D. Goldfeld, L. Szpiro, Bounds for the order of the Tate-Shafarevich group, Compositio Math., 97 (1995) 71-87.
- [19] R. Greenberg, On the Birch and Swinnerton-Dyer conjecture, Invent. M ath., 72 (1983) 241-265.
- [20] В. H. Gross, Kolyvagin’s work on elliptic curves, in: L-functions and Arithmetic (J. Coates, M. J. Taylor, eds.), London Math. Soc. Lecture Note Series, vol. 153, Cambridge Univ. Press, Cambridge, 1991, 235-256.
- [21] В. H. Gross, D. B. Zagier, Heegner points and derivatives of L-series, Invent. Math., 84 (1986), no. 2, 225-320.
- [22] J. Kaczorowski, Czwarty problem milenijny: Hipoteza Riemanna, Wiadom. Mat., 38 (2002), 91-120.
- [23] A. W. Knapp, Elliptic Curves, Math. Notes, vol. 40, Princeton University Press, Princeton, 1992.
- [24] N. Кoblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984.
- [25] V. А. Коlуvagin, Finiteness of E(Q) and Ш(E, Q) for a subclass of Weil curves, (ros.), Izv. Akad. Nauk SSSR, Ser. M at., 5 2 (1988), no. 3, 523-540.
- [26] V. А. Коlуvagin, The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves, (ros.), Izv. Akad. Nauk SSSR, Ser. Mat., 5 2 (1988), no. 6, 1154-1180.
- [27] V. А. Коlуvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curve, Proc. Intern. Congr. M ath., Kyoto 1988. I (1990), 429-436.
- [28] S. Lang, Algebra, wyd. 2, PWN, Warszawa, 1984.
- [29] Delang Li, Ye Tian, On the Birch-Swinnerton-Dyer conjecture, Acta Math. Sinica, English Series, 1 6 (2000), no. 2, 229-236.
- [30] Е. Lutz, Sur l’équation y^2 = x^3 - Ax - B dans les corps p-adiques, J. Reine Angew. Math., 177 (1937) 238-247.
- [31] W. G. Mс Сallum, Kolyvagin’s work on Shafarevich-Tate groups, in: L-functions and Arithmetic (J. Coates, M. J. Taylor, eds), London Math. Soc. Lecture Note Series, vol. 153, Cambridge Univ. Press, Cambridge, 1991, 295-316.
- [32] Yu. I. Manin, Cyclotomie fields and modular curves (ros.), Uspehi Mat. Nauk, 26 (1971), no. 6, (162), 7-71.
- [33] В. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. IHES, 47 (1977) 33-186.
- [34] В. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978) 129-162.
- [35] J. S. Milne, The Tate-Safarevic group of a constant abelian variety, Invent. Math., 6 (1968) 91-105.
- [36] T. Nagell, Solution de quelques problèmes dans la théorie arithmétique des cubiques planes du premier genre, Wid. Akad. Skrifter, Oslo, 1 (1935), no. 1, 1-25.
- [37] A. Nitaj, Invariants des courbes de Frey-Hellegouarch et grandes groupes de Tate-Shafarevich, Acta Arith., 93 (2000) 303-327.
- [38] K. A. Ribet, On modular representations of Gal(Q/Q) arising from modular forms, Invent. Math., 100 (1990), 431-47 6.
- [39] H. E. Rose, On some elliptic curves with large Sha, Exper. M ath., 9 (2000), no. 1, 85-89.
- [40] K. Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 64 (1981), 455-470.
- [41] K. Rubin, Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication, Invent. M ath., 8 9 (1987), no. 3, 527-559.
- [42] K. Rubin, The „main conjecture” of Iwasawa theory for imaginary quadratic fields, Invent. Math., 103 (1991), 25-68.
- [43] K. Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, in: J. Coates, R. Greenberg, K. A. Ribet, K. Rubin, Arithmetic Theory of Elliptic Curves (Cetraro, Italy 1997), Lecture Notes in Math. 1716 (C. Viola, eds.), Springer-Verlag, Berlin, 1999, 167-234.
- [44] K. Rubin, A. Silverberg, Ranks of elliptic curves, Bull. Amer. Math. Soc., 39 (2002) 455-474.
- [45] J.-P. Serre, Lectures on the Mordell-Weil theorem, Friedr. Vieweg & Sohn, Braunschweig, 1989.
- [46] A. Silverberg, Open questions in arithmetic algebraic geometry, in: Arithmetic Algebraic Geometry (B. Conrad, K. Rubin, eds.), IA S/P ark City Mathematics Series, vol. 9, Providence, RI, AMS, 2001, 83-142.
- [47] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, Vol. 108, Springer-Verlag, New York, 1986.
- [48] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, Springer-Verlag, New York, 1994.
- [49] J. H. Silverman, J. Tate, Rational points on elliptic curves, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992.
- [50] N. M. Stephens, The diophantine equation X^3 + Y^3 = DZ^3 and the conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. M ath., 231 (1968) 121-162.
- [51] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analogue, Séminaire Bourbaki (1965/66), no. 306, 415-440.
- [52] J. Tate, The arithmetic of elliptic curves, Invent. Math., 23 (1974) 179-206.
- [53] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), no. 3, 553-572.
- [54] J. Tunnell, A classical Diophantine problem and modular form of weight 3/2, Invent. Math., 72 (1983), 323-334.
- [55] В. M. M. de Weger, А + В = С and big Ш's, Quart. J. Math. Oxford, 49 (1998) 105-128.
- [56] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. Math., 141 (1995), no. 3, 443-551.
- [57] A. Wiles, The Birch and Swinnerton-Dyer conjecture http://www.claymath.org/prizeproblems/birchsd.htm
- [58] S. Zhang, A note on Sha of some elliptic curves, Adv. Math. (China), 26 (1997), no. 6, 551-555.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d37a00cd-7010-44f1-8116-4bb047531a1f