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DESCRIBED BY THE FRACTIONAL ORDER DIFFERENTIAL EQUATION 

Abstract 

The recent dynamic development of research into the application of the fractional calculus to analyse dynamic 

systems made the authors of this paper attempt its application to the analysis and modelling of transducers used in 

pneumatic systems. The paper compares logarithmic frequency responses of the pressure transducer described by 

the ordinary differential equation with the one described by the fractional order differential equation. Simulation 

tests were made in MATLAB programme. 

INTRODUCTION 

A mathematical model and frequency analysis of the pressure 
transducer described by the second order differential equation is 
well-known today [5], [7], [8], [10] and [12]. The physical phenome-
non of pressure dynamics in a transducer is of continuous charac-
ter. Thus we can pose a question: why is a pressure transmitter of 
continuous character described by the second order differential 
equation, that is the order from a discrete set and not a continuous 
set? 

This paper is an attempt at a mathematical description and fre-
quency analysis of a transmitter of continuous quantities, like for 
example pressure, with the use of the fractional order differential 
equations. The basic feature of the fractional order derivatives is the 
fact that they are determined on a section – not at a point as it is the 
case with classical derivatives. Such a property allows us to analyse 
phenomena in more detail, especially phenomena of  continuous 
character. The hypothesis which was put forward inspired the au-
thors of this paper to take advantage of a mathematical tool which is 
the differential-integral calculus of fractional order to model measur-
ing transducers used in pneumatic systems [3] and [6]. 

1. MEMBRANE PRESSURE TRANSDUCER 

To examine dynamic properties of the pressure transducer, a 
model of a pressure chamber with an inlet pipe was made (Fig. 1).  

 

 
Fig. 1. Pressure chamber with an inlet pipe: r, l – pipe dimensions, 
p0 – inlet pressure, p – pressure in the transmitter’s chamber [6] 

 
The differential equation constituting the mathematical model of 

the analysed pneumatic system, in which the fractional order differ-
ential equation is applied, looks as follows [6]: 
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where: 
p(t) – pressure in the transducer’s chamber, 
p0(t) – inlet pressure, 
ξ – damping coefficient, 
ω0 – pulsation, 
v>0 – order of derivative. 

 

To determine the derivative of a continuous function, i.e. pres-
sure in the transducer’s chamber, we used the Riemann-Liouville 
definition of fractional derivative [5] and [7]: 
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  – the order of integration within the limits ),( ta  of the function 
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Euler gamma function. 
The Laplace transform for the Riemann-Liouville fractional de-

rivative is [5] and [7]: 
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where: Njj  1  

 

Applying the Laplace transform to equation (1), for zero initial 
conditions, we obtain: 
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From equation (5) we obtain the transfer function of the analysed 
pressure transmitter: 
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Substituting: 
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in the formula (6), we obtain the spectral transfer of the transducer: 
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Owing to elementary transformations we can calculate the real 
and imaginary parts of the spectral transform function: 

)()()( )()()(  vvv jQPjG              (9)  

Knowing the real and imaginary part of the spectral transform of 
the transducer, we can determine the equation describing the loga-
rithmic amplitude function: 
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as well as the equation describing the logarithmic phase character-
istic: 
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2. NUMERICAL TESTS AND SIMULATIONS 

To present frequency responses of logarithmic functions of 
amplitude and phase of the pneumatic pressure transducer, a pro-
gramme was written in MATLAB environment [1] and [11] which 
calculates the function values for the given parameters of the sys-
tem and selected orders and plots their characteristics. 

In order to verify the dependencies describing logarithmic func-
tions of amplitude (10) and phase (11) of the tested transducer, a 
pneumatic pressure transducer was modelled in the MATLAB envi-
ronment described by means of an ordinary differential equation 
and a fractional order differential equation. While describing the 
transducer with the use of the fractional order differential equation 
we adopted parameter v=1 and compared the obtained logarithmic 
functions of the amplitude and phase with the logarithmic functions 
of amplitude and phase obtained from a description of the pressure 
transducer made with an ordinary differential equation. 

In simulations we adopted: 
– pulsation ω0 = 500 [rad/s]; 
– damping coefficient ξ = 0.7. 

3. FREQUENCY RESPONSES OF THE TRANSDUCER 
MODELLED WITH THE USE OF ORDINARY AND 
FRACTIONAL ORDER DIFFERENTIAL EQUATIONS 

The transfer function of the pneumatic pressure transducer de-
scribed with the use of the ordinary differential equation looks as 
follows: 
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While conducting simulation of equation (12), which represents 
dynamics of phenomena occurring in the analysed pneumatic sys-
tem, in MATLAB environment, we obtained the frequency responses 
outlined in Figure 2: 

When simulating in MATLAB environment equations (10) and 
(11), describing the pneumatic pressure transducer with the use of 
the fractional order differential equation and adopting the parameter 
v=1, we obtained the functions outlined in Figure 3. 

Logarithmic frequency responses of amplitude and phase rep-
resented by means of the ordinary differential equation simulation 
(Figure 2), overlap with the frequency responses obtained by simu-
lation of equations describing the amplitude function (10) and the 
phase function (11), obtained from the equation for the tested trans-
ducer described by the fractional order differential equation (Figure 
3).  

 
Fig. 2. Logarithmic frequency responses of the pneumatic transducer described by the ordinary differential equation  
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4. FREQUENCY RESPONSES OF THE PRESSURE 
TRANSDUCER DESCRIBED BY THE FRACTIONAL 
ORDER DIFFERENTIAL EQUATION 

To obtain Bode plots, equations (10) and (11) underwent simu-
lations by writing a suitable programme in MATLAB environment.  

The program written in MATLAB environment enables analysis 
of the transducer for differentials of different orders, with an optional 
time step, as the order was given as parameter v. Simulation results 
for selected values of parameter v, are outlined in Figures 4 and 5 
[6]. 

CONCLUSIONS 

By frequency simulation of equation (12), representing the 
transfer function of the pressure transducer described by the ordi-
nary differential equation and equation (6), representing the transfer 
function of the transducer described by the fractional order differen-
tial equation, it was shown that logarithmic frequency responses of 
amplitude and phase coincide for parameter v=1. This proves cor-
rectness of the mathematical model and algorithm creating these 
functions. 

Analyses of the functions indicate that for v<1 logarithmic am-
plitude functions are monotonically decreasing functions; for v>1 
logarithmic amplitude functions have the maximum depending on 
the order of the differential. The maximum is achieved at the reso-
nant pulsation frequency.  

When the order of the differential increases, the frequency re-
sponses acquire the character of the inertial second-order member; 
when the order of the differential decreases, the frequency re-
sponses acquire the character of the inertial first-order member. 

On the basis of the frequency response analysis we can state 
that increasing the v parameter above 1 causes that the system 
behaves like the inertial second-order system with damping 
ξ<0.707. The higher the order is, the lower damping is. 
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Fig. 3. Logarithmic frequency responses of the pneumatic transducer described by the fractional order differential equations 
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CHARAKTERYSTYKI CZĘSTOTLI-
WOŚCIOWE MODELU PRZETWOR-

NIKA CIŚNIENIA OPISANEGO 
RÓWNANIEM RÓŻNICZKOWYM 

NIECAŁKOWITYCH RZĘDÓW 

Streszczenie 

Dynamiczny rozwój badań w ostatnich latach nad 

zastosowaniem rachunku różniczkowo-całkowego nie-

całkowitych rzędów do analizy układów dynamicznych, 

skłonił autorów artykułu do podjęcia próby jego zasto-

sowania w analizie i modelowaniu przetworników sto-

sowanych w układach pneumatycznych. Przetworniki 

pneumatyczne znajdują szerokie zastosowanie w trans-

porcie, m.in. pojazdach szynowych, w autobusach, w 

układach hamulcowych. 

W artykule przedstawiono model matematyczny 

 
Fig. 4. Logarithmic amplitude functions of the pneumatic transducer described by the fractional order differential equation for parameter v from 
the (0.8–1.2) range 

 
Fig. 5. Logarithmic phase functions of the pneumatic transducer described by the fractional order differential equation for the parameter v 
from the (0.8–1.2) range 
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przetwornika pneumatycznego, pobudzonego stałym 

wymuszeniem, opisany rachunkiem różniczkowo- cał-

kowym niecałkowitego rzędu oraz jego charakterystyki 

częstotliwościowe. Porównano modele przetwornika 

ciśnienia całkowitego i niecałkowitego rzędu. Badania 

wykonano za pomocą oprogramowania MATLAB. 
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